Zhan Weiwei, Lian Xu, Liu Jiangong, Han Jisu, Huang Yu, Yang Hao, Zhan Chunhui, Winkler Alexander J, Gentine Pierre
Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA.
Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Nat Ecol Evol. 2025 Jul 11. doi: 10.1038/s41559-025-02761-0.
Numerous leaf-level experiments suggest that plant intrinsic water-use efficiency (iWUE) increases under elevated CO because of reduced stomatal conductance and enhanced photosynthesis. However, it remains elusive whether this response can be extrapolated to the ecosystem scale, because confounding factors and compensating feedbacks are often involved in ecosystem iWUE variations. Here we develop a machine learning-based framework to disentangle the ecosystem-scale CO effects on iWUE and its two components, canopy conductance (Gc) and gross primary productivity (GPP), based on global networks of long-term eddy covariance observations. Our results show widespread CO-induced enhancement of iWUE across diverse ecosystems, driven predominantly by Gc reduction rather than GPP stimulation. Moreover, three divergent response types are identified across the studied ecosystems, based on the strength and significance of CO-driven Gc reduction and GPP enhancement, indicating spatially non-uniform responses to rising CO. Nutrient supply, water availability and biome types are found to be critical factors regulating this spatial heterogeneity. Overall, our study provides observational insights into ecosystem-scale CO fertilization effects. Such understandings are essential to inform terrestrial biosphere models for better projections of carbon and water cycles given the intensified changing climate in a CO-rich future.
大量叶片水平的实验表明,由于气孔导度降低和光合作用增强,在二氧化碳浓度升高的情况下,植物的内在水分利用效率(iWUE)会提高。然而,这种响应是否能外推到生态系统尺度仍不明确,因为生态系统iWUE的变化通常涉及混杂因素和补偿性反馈。在此,我们基于长期涡度协方差观测的全球网络,开发了一个基于机器学习的框架,以厘清生态系统尺度上二氧化碳对iWUE及其两个组成部分——冠层导度(Gc)和总初级生产力(GPP)的影响。我们的结果表明,在不同生态系统中,二氧化碳诱导的iWUE普遍增强,主要是由Gc降低而非GPP增加驱动的。此外,根据二氧化碳驱动的Gc降低和GPP增加的强度和显著性,在研究的生态系统中识别出三种不同的响应类型,表明对二氧化碳上升的空间响应不均匀。发现养分供应、水分可利用性和生物群落类型是调节这种空间异质性的关键因素。总体而言,我们的研究提供了对生态系统尺度二氧化碳施肥效应的观测见解。鉴于在未来二氧化碳浓度升高且气候变化加剧的情况下,此类认识对于为陆地生物圈模型提供信息以更好地预测碳循环和水循环至关重要。