Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA.
Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA.
Eur J Hum Genet. 2021 Jul;29(7):1071-1081. doi: 10.1038/s41431-021-00813-0. Epub 2021 Feb 8.
Polygenic risk models have led to significant advances in understanding complex diseases and their clinical presentation. While polygenic risk scores (PRS) can effectively predict outcomes, they do not generally account for disease subtypes or pathways which underlie within-trait diversity. Here, we introduce a latent factor model of genetic risk based on components from Decomposition of Genetic Associations (DeGAs), which we call the DeGAs polygenic risk score (dPRS). We compute DeGAs using genetic associations for 977 traits and find that dPRS performs comparably to standard PRS while offering greater interpretability. We show how to decompose an individual's genetic risk for a trait across DeGAs components, with examples for body mass index (BMI) and myocardial infarction (heart attack) in 337,151 white British individuals in the UK Biobank, with replication in a further set of 25,486 non-British white individuals. We find that BMI polygenic risk factorizes into components related to fat-free mass, fat mass, and overall health indicators like physical activity. Most individuals with high dPRS for BMI have strong contributions from both a fat-mass component and a fat-free mass component, whereas a few "outlier" individuals have strong contributions from only one of the two components. Overall, our method enables fine-scale interpretation of the drivers of genetic risk for complex traits.
多基因风险模型在理解复杂疾病及其临床表现方面取得了重大进展。虽然多基因风险评分(PRS)可以有效地预测结果,但它们通常不能解释疾病亚型或潜在的多样性。在这里,我们引入了一种基于 Decomposition of Genetic Associations(DeGAs)成分的遗传风险潜在因子模型,我们称之为 DeGAs 多基因风险评分(dPRS)。我们使用 977 个特征的遗传关联计算 DeGAs,发现 dPRS 与标准 PRS 性能相当,但具有更高的可解释性。我们展示了如何在 DeGAs 成分之间分解个体对特征的遗传风险,并用 UK Biobank 中 337151 名白种英国人的体重指数(BMI)和心肌梗死(心脏病发作)的例子来说明,在另一组 25486 名非英国白种人中进行了复制。我们发现 BMI 的多基因风险因素可以分为与无脂肪质量、脂肪质量和整体健康指标(如身体活动)相关的成分。大多数 BMI 高 dPRS 的个体都有来自脂肪质量成分和无脂肪质量成分的强烈贡献,而少数“异常”个体只有来自这两个成分之一的强烈贡献。总体而言,我们的方法可以对复杂特征的遗传风险驱动因素进行精细解释。