Suppr超能文献

评估数字表型学以增强人类疾病的遗传研究。

Assessing Digital Phenotyping to Enhance Genetic Studies of Human Diseases.

机构信息

Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.

Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.

出版信息

Am J Hum Genet. 2020 May 7;106(5):611-622. doi: 10.1016/j.ajhg.2020.03.007. Epub 2020 Apr 9.

Abstract

Population-scale biobanks that combine genetic data and high-dimensional phenotyping for a large number of participants provide an exciting opportunity to perform genome-wide association studies (GWAS) to identify genetic variants associated with diverse quantitative traits and diseases. A major challenge for GWAS in population biobanks is ascertaining disease cases from heterogeneous data sources such as hospital records, digital questionnaire responses, or interviews. In this study, we use genetic parameters, including genetic correlation, to evaluate whether GWAS performed using cases in the UK Biobank ascertained from hospital records, questionnaire responses, and family history of disease implicate similar disease genetics across a range of effect sizes. We find that hospital record and questionnaire GWAS largely identify similar genetic effects for many complex phenotypes and that combining together both phenotyping methods improves power to detect genetic associations. We also show that family history GWAS using cases ascertained on family history of disease agrees with combined hospital record and questionnaire GWAS and that family history GWAS has better power to detect genetic associations for some phenotypes. Overall, this work demonstrates that digital phenotyping and unstructured phenotype data can be combined with structured data such as hospital records to identify cases for GWAS in biobanks and improve the ability of such studies to identify genetic associations.

摘要

人口规模的生物银行将遗传数据和大量参与者的高维表型结合在一起,为进行全基因组关联研究(GWAS)提供了一个令人兴奋的机会,以确定与多种数量性状和疾病相关的遗传变异。人群生物银行中 GWAS 的一个主要挑战是从医院记录、数字问卷回答或访谈等异构数据源中确定疾病病例。在这项研究中,我们使用遗传参数,包括遗传相关性,来评估使用 UK Biobank 中从医院记录、问卷回答和疾病家族史确定的病例进行的 GWAS 是否在一系列效应大小上暗示了相似的疾病遗传学。我们发现,对于许多复杂表型,医院记录和问卷 GWAS 主要识别出相似的遗传效应,并且结合两种表型方法可以提高检测遗传关联的能力。我们还表明,使用疾病家族史确定病例的家族史 GWAS 与组合的医院记录和问卷 GWAS 一致,并且家族史 GWAS 对一些表型具有更好的检测遗传关联的能力。总体而言,这项工作表明,数字表型和非结构化表型数据可以与结构化数据(如医院记录)结合使用,以确定生物银行中 GWAS 的病例,并提高此类研究识别遗传关联的能力。

相似文献

1
Assessing Digital Phenotyping to Enhance Genetic Studies of Human Diseases.评估数字表型学以增强人类疾病的遗传研究。
Am J Hum Genet. 2020 May 7;106(5):611-622. doi: 10.1016/j.ajhg.2020.03.007. Epub 2020 Apr 9.

引用本文的文献

本文引用的文献

1
Bayesian model comparison for rare-variant association studies.贝叶斯模型比较在罕见变异关联研究中的应用。
Am J Hum Genet. 2021 Dec 2;108(12):2354-2367. doi: 10.1016/j.ajhg.2021.11.005. Epub 2021 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验