Suppr超能文献

计算机辅助检测胸部 CT 中的亚实性结节:基于深度学习的 CT 层厚减少可提高性能。

Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction.

机构信息

From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul 138-736, Korea (S.P., S.M.L., W.K., K.H.D., J.B.S.); and VUNO, Seoul, South Korea (H.P., K.H.J.).

出版信息

Radiology. 2021 Apr;299(1):211-219. doi: 10.1148/radiol.2021203387. Epub 2021 Feb 9.

Abstract

Background Studies on the optimal CT section thickness for detecting subsolid nodules (SSNs) with computer-aided detection (CAD) are lacking. Purpose To assess the effect of CT section thickness on CAD performance in the detection of SSNs and to investigate whether deep learning-based super-resolution algorithms for reducing CT section thickness can improve performance. Materials and Methods CT images obtained with 1-, 3-, and 5-mm-thick sections were obtained in patients who underwent surgery between March 2018 and December 2018. Patients with resected synchronous SSNs and those without SSNs (negative controls) were retrospectively evaluated. The SSNs, which ranged from 6 to 30 mm, were labeled ground-truth lesions. A deep learning-based CAD system was applied to SSN detection on CT images of each section thickness and those converted from 3- and 5-mm section thickness into 1-mm section thickness by using the super-resolution algorithm. The CAD performance on each section thickness was evaluated and compared by using the jackknife alternative free response receiver operating characteristic figure of merit. Results A total of 308 patients (mean age ± standard deviation, 62 years ± 10; 183 women) with 424 SSNs (310 part-solid and 114 nonsolid nodules) and 182 patients without SSNs (mean age, 65 years ± 10; 97 men) were evaluated. The figures of merit differed across the three section thicknesses (0.92, 0.90, and 0.89 for 1, 3, and 5 mm, respectively; = .04) and between 1- and 5-mm sections ( = .04). The figures of merit varied for nonsolid nodules (0.78, 0.72, and 0.66 for 1, 3, and 5 mm, respectively; < .001) but not for part-solid nodules (range, 0.93-0.94; = .76). The super-resolution algorithm improved CAD sensitivity on 3- and 5-mm-thick sections ( = .02 for 3 mm, < .001 for 5 mm). Conclusion Computer-aided detection (CAD) of subsolid nodules performed better at 1-mm section thickness CT than at 3- and 5-mm section thickness CT, particularly with nonsolid nodules. Application of a super-resolution algorithm improved the sensitivity of CAD at 3- and 5-mm section thickness CT. © RSNA, 2021 See also the editorial by Goo in this issue.

摘要

背景 对于使用计算机辅助检测(CAD)检测亚实性结节(SSN)的最佳 CT 层厚的研究较少。目的 评估 CT 层厚对 SSN 检测中 CAD 性能的影响,并研究基于深度学习的超分辨率算法是否可以降低 CT 层厚以提高性能。

材料与方法 对 2018 年 3 月至 2018 年 12 月期间接受手术的患者进行了 1、3 和 5-mm 层厚的 CT 扫描。回顾性评估了存在切除性同步 SSN 和不存在 SSN(阴性对照)的患者。SSN 的范围为 6 至 30mm,被标记为真实病变。在每个层厚的 CT 图像上以及通过超分辨率算法将 3mm 和 5mm 层厚转换为 1mm 层厚的图像上应用基于深度学习的 CAD 系统进行 SSN 检测。使用 Jackknife 替代自由响应接收器工作特性图评估和比较每个层厚的 CAD 性能。

结果 共评估了 308 名患者(平均年龄±标准差,62 岁±10 岁;183 名女性)和 424 个 SSN(310 个部分实性和 114 个非实性结节)以及 182 名无 SSN 患者(平均年龄 65 岁±10 岁;97 名男性)。三个层厚之间的效能值不同(1mm、3mm 和 5mm 分别为 0.92、0.90 和 0.89; =.04),1mm 和 5mm 层厚之间也不同( =.04)。非实性结节的效能值不同(1mm、3mm 和 5mm 分别为 0.78、0.72 和 0.66; <.001),但部分实性结节的效能值无差异(范围为 0.93-0.94; =.76)。超分辨率算法提高了 3mm 和 5mm 层厚 CT 上的 CAD 敏感性( =.02 用于 3mm, <.001 用于 5mm)。

结论 与 3mm 和 5mm 层厚 CT 相比,1mm 层厚 CT 对亚实性结节的 CAD 检测效果更好,尤其是对于非实性结节。应用超分辨率算法可提高 3mm 和 5mm 层厚 CT 上 CAD 的敏感性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验