Suppr超能文献

基于知识的机器人颅内立体定向放射外科治疗计划。

Knowledge-based planning in robotic intracranial stereotactic radiosurgery treatments.

机构信息

Department of Radiation Oncology, Boston Medical Center, Boston University school of Medicine, Boston, MA, USA.

Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

J Appl Clin Med Phys. 2021 Mar;22(3):48-54. doi: 10.1002/acm2.13173. Epub 2021 Feb 9.

Abstract

PURPOSE

To develop a knowledge-based planning (KBP) model that predicts dosimetric indices and facilitates planning in CyberKnife intracranial stereotactic radiosurgery/radiotherapy (SRS/SRT).

METHODS

Forty CyberKnife SRS/SRT plans were retrospectively used to build a linear KBP model which correlated the equivalent radius of the PTV (r ) and the equivalent radius of volume that receives a set of prescription dose (r , where V  = V , V … V ). To evaluate the model's predictability, a fourfold cross-validation was performed for dosimetric indices such as gradient measure (GM) and brain V . The accuracy of the prediction was quantified by the mean and the standard deviation of the difference between planned and predicted values, (i.e., ΔGM = GM - GM and fractional ΔV  = (V - V )/V ) and a coefficient of determination, R . Then, the KBP model was incorporated into the planning for another 22 clinical cases. The training plans and the KBP test plans were compared in terms of the new conformity index (nCI) as well as the planning efficiency.

RESULTS

Our KBP model showed desirable predictability. For the 40 training plans, the average prediction error from cross-validation was only 0.36 ± 0.06 mm for ΔGM, and 0.12 ± 0.08 for ΔV . The R for the linear fit between r and r was 0.985 ± 0.019 for isodose volumes ranging from V to V ; particularly, R  = 0.995 for V and R  = 0.997 for V . Compared to the training plans, our KBP test plan nCI was improved from 1.31 ± 0.15 to 1.15 ± 0.08 (P < 0.0001). The efficient automatic generation of the optimization constraints by using our model requested no or little planner's intervention.

CONCLUSION

We demonstrated a linear KBP based on PTV volumes that accurately predicts CyberKnife SRS/SRT planning dosimetric indices and greatly helps achieve superior plan quality and planning efficiency.

摘要

目的

开发一种基于知识的计划(KBP)模型,预测剂量学指标并促进 CyberKnife 颅内立体定向放射外科/放射治疗(SRS/SRT)的计划制定。

方法

回顾性地使用 40 个 CyberKnife SRS/SRT 计划来构建线性 KBP 模型,该模型与 PTV 的等效半径(r)和接受一组处方剂量的体积的等效半径(r ,其中 V 等于 V ,V ,V )相关联。为了评估模型的可预测性,对剂量学指标(如梯度测量(GM)和脑 V)进行了四重交叉验证。通过计划值和预测值之间差异的平均值和标准差来量化预测的准确性,(即,ΔGM=GM-GM 和分数 ΔV=(V-V)/V)以及确定系数 R。然后,将 KBP 模型纳入另外 22 例临床病例的计划中。在新的一致性指数(nCI)和计划效率方面,比较 KBP 训练计划和测试计划。

结果

我们的 KBP 模型表现出良好的可预测性。对于 40 个训练计划,交叉验证的平均预测误差仅为 0.36±0.06mm 用于ΔGM,0.12±0.08 用于ΔV。r 与 r 之间线性拟合的 R 为 0.985±0.019 对于剂量范围从 V 到 V 的等剂量体积;特别是,R=0.995 用于 V,R=0.997 用于 V。与训练计划相比,我们的 KBP 测试计划的 nCI 从 1.31±0.15 提高到 1.15±0.08(P<0.0001)。通过使用我们的模型自动生成优化约束几乎不需要或不需要计划者的干预。

结论

我们展示了一种基于 PTV 体积的线性 KBP,可准确预测 CyberKnife SRS/SRT 计划的剂量学指标,并极大地有助于实现卓越的计划质量和计划效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b673/7984472/6d6794b56532/ACM2-22-48-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验