Suppr超能文献

IFSS-Net:用于更快的容积超声中肌肉分割和传播的交互式Few-Shot 暹罗网络。

IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound.

出版信息

IEEE Trans Med Imaging. 2021 Oct;40(10):2615-2628. doi: 10.1109/TMI.2021.3058303. Epub 2021 Sep 30.

Abstract

We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.

摘要

我们提出了一种准确、快速且高效的 3D 自由式超声数据分割和肌肉掩模传播方法,旨在实现精确的体积量化。我们部署了一个深度暹罗 3D 编解码器网络,该网络可以捕获连续切片中肌肉外观和形状的变化。我们使用它来传播由临床专家注释的参考掩模。为了处理整个体积中肌肉形状的更长变化并提供准确的传播,我们设计了一个双向长短期记忆模块。此外,为了用最少的训练样本训练我们的模型,我们提出了一种策略,该策略结合了从少数注释的 2D 超声切片中学习和对未注释的切片进行顺序伪标记。我们引入了一个递减的目标函数更新策略,以在缺乏大量注释数据的情况下指导模型收敛。在训练了几个体积后,递减更新策略从弱监督训练切换到小样本设置。最后,为了处理前景和背景肌肉像素之间的类不平衡,我们提出了一种参数化 Tversky 损失函数,该函数可以自适应地惩罚假阳性和假阴性。我们在来自 44 个对象的 61600 张图像的数据集上验证了我们的方法,用于分割、标签传播和三个下肢肌肉的体积计算。我们实现了超过 95%的 Dice 得分系数和 1.6035±0.587%的体积误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验