Suppr超能文献

使用马尔可夫模型进行大规模交通流模拟。

Large-scale simulation of traffic flow using Markov model.

机构信息

Department of Information Technology, University of Debrecen, Debrecen, Hungary.

出版信息

PLoS One. 2021 Feb 9;16(2):e0246062. doi: 10.1371/journal.pone.0246062. eCollection 2021.

Abstract

Modeling and simulating movement of vehicles in established transportation infrastructures, especially in large urban road networks is an important task. It helps in understanding and handling traffic problems, optimizing traffic regulations and adapting the traffic management in real time for unexpected disaster events. A mathematically rigorous stochastic model that can be used for traffic analysis was proposed earlier by other researchers which is based on an interplay between graph and Markov chain theories. This model provides a transition probability matrix which describes the traffic's dynamic with its unique stationary distribution of the vehicles on the road network. In this paper, a new parametrization is presented for this model by introducing the concept of two-dimensional stationary distribution which can handle the traffic's dynamic together with the vehicles' distribution. In addition, the weighted least squares estimation method is applied for estimating this new parameter matrix using trajectory data. In a case study, we apply our method on the Taxi Trajectory Prediction dataset and road network data from the OpenStreetMap project, both available publicly. To test our approach, we have implemented the proposed model in software. We have run simulations in medium and large scales and both the model and estimation procedure, based on artificial and real datasets, have been proved satisfactory and superior to the frequency based maximum likelihood method. In a real application, we have unfolded a stationary distribution on the map graph of Porto, based on the dataset. The approach described here combines techniques which, when used together to analyze traffic on large road networks, has not previously been reported.

摘要

建立交通基础设施中车辆的建模和模拟,特别是在大型城市道路网络中,是一项重要任务。它有助于理解和处理交通问题,优化交通规则,并实时适应交通管理以应对意外灾害事件。其他研究人员之前提出了一种基于图和马尔可夫链理论相互作用的用于交通分析的严格数学随机模型。该模型提供了一个转移概率矩阵,用于描述道路网络上车辆的独特静态分布的交通动态。在本文中,通过引入二维静态分布的概念,为该模型提出了一种新的参数化方法,该方法可以处理交通动态和车辆分布。此外,应用加权最小二乘估计方法使用轨迹数据估计这个新的参数矩阵。在案例研究中,我们将我们的方法应用于出租车轨迹预测数据集和 OpenStreetMap 项目的道路网络数据,这些数据均可公开获取。为了测试我们的方法,我们已经在软件中实现了所提出的模型。我们已经在中等和大规模上进行了模拟,并且基于人工和真实数据集的模型和估计过程都被证明是令人满意的,并且优于基于频率的最大似然方法。在实际应用中,我们根据数据集在波尔图的地图图上展开了一个静态分布。这里描述的方法结合了技术,这些技术一起用于分析大型道路网络上的交通,以前没有报道过。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f327/7872230/10cae579a36e/pone.0246062.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验