Suppr超能文献

宏观动态与城市交通拥堵的崩溃。

Macroscopic dynamics and the collapse of urban traffic.

机构信息

Department of Physics, National University of Colombia, Bogotá 111321, Colombia.

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12654-12661. doi: 10.1073/pnas.1800474115.

Abstract

Stories of mega-jams that last tens of hours or even days appear not only in fiction but also in reality. In this context, it is important to characterize the collapse of the network, defined as the transition from a characteristic travel time to orders of magnitude longer for the same distance traveled. In this multicity study, we unravel this complex phenomenon under various conditions of demand and translate it to the travel time of the individual drivers. First, we start with the current conditions, showing that there is a characteristic time τ that takes a representative group of commuters to arrive at their destinations once their maximum density has been reached. While this time differs from city to city, it can be explained by Γ, defined as the ratio of the vehicle miles traveled to the total vehicle distance the road network can support per hour. Modifying Γ can improve τ and directly inform planning and infrastructure interventions. In this study we focus on measuring the vulnerability of the system by increasing the volume of cars in the network, keeping the road capacity and the empirical spatial dynamics from origins to destinations unchanged. We identify three states of urban traffic, separated by two distinctive transitions. The first one describes the appearance of the first bottlenecks and the second one the collapse of the system. This collapse is marked by a given number of commuters in each city and it is formally characterized by a nonequilibrium phase transition.

摘要

故事中的超级拥堵持续数十小时甚至数天,不仅出现在小说中,也出现在现实中。在这种情况下,重要的是要描述网络的崩溃,即从特征旅行时间到相同距离的旅行时间呈数量级增长的转变。在这项多城市研究中,我们在各种需求条件下揭示了这种复杂现象,并将其转化为个体驾驶员的旅行时间。首先,我们从当前的情况出发,表明一旦达到最大密度,就有一个特征时间 τ,代表一组通勤者到达目的地所需的时间。虽然这个时间因城市而异,但可以用 Γ 来解释,Γ 定义为行驶里程与道路网络每小时支持的总车辆距离之比。通过修改 Γ,我们可以改善 τ,并直接为规划和基础设施干预提供信息。在这项研究中,我们通过增加网络中的汽车数量来测量系统的脆弱性,同时保持道路容量和从起点到目的地的经验空间动态不变。我们确定了城市交通的三种状态,由两个不同的转变分开。第一个描述了第一个瓶颈的出现,第二个描述了系统的崩溃。这种崩溃由每个城市中给定数量的通勤者来标记,并通过一个非平衡相变来正式描述。

相似文献

1
Macroscopic dynamics and the collapse of urban traffic.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12654-12661. doi: 10.1073/pnas.1800474115.
2
Percolation transition in dynamical traffic network with evolving critical bottlenecks.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):669-72. doi: 10.1073/pnas.1419185112. Epub 2014 Dec 31.
3
Traffic gridlock on a honeycomb city.
Phys Rev E. 2017 Mar;95(3-1):032320. doi: 10.1103/PhysRevE.95.032320. Epub 2017 Mar 31.
4
Empirical evidence for a jamming transition in urban traffic.
J R Soc Interface. 2021 Sep;18(182):20210391. doi: 10.1098/rsif.2021.0391. Epub 2021 Sep 1.
5
6
Predictability of road traffic and congestion in urban areas.
PLoS One. 2015 Apr 7;10(4):e0121825. doi: 10.1371/journal.pone.0121825. eCollection 2015.
8
Switch between critical percolation modes in city traffic dynamics.
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):23-28. doi: 10.1073/pnas.1801545116. Epub 2018 Dec 27.
9
Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
Accid Anal Prev. 2017 Apr;101:67-77. doi: 10.1016/j.aap.2017.01.018. Epub 2017 Feb 10.

引用本文的文献

1
Social implications of coexistence of CAVs and human drivers in the context of route choice.
Sci Rep. 2025 Feb 25;15(1):6768. doi: 10.1038/s41598-025-90783-w.
2
Addressing the urban congestion challenge based on traffic bottlenecks.
Philos Trans A Math Phys Eng Sci. 2024 Dec 16;382(2285):20240095. doi: 10.1098/rsta.2024.0095. Epub 2024 Nov 13.
3
Pattern detection in the vehicular activity of bus rapid transit systems.
PLoS One. 2024 Oct 29;19(10):e0312541. doi: 10.1371/journal.pone.0312541. eCollection 2024.
4
Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions.
Nat Commun. 2023 Dec 4;14(1):8002. doi: 10.1038/s41467-023-43591-7.
5
Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks.
Nat Commun. 2021 Feb 23;12(1):1254. doi: 10.1038/s41467-021-21483-y.
6
Large-scale simulation of traffic flow using Markov model.
PLoS One. 2021 Feb 9;16(2):e0246062. doi: 10.1371/journal.pone.0246062. eCollection 2021.
7
Tensor Decomposition for Spatial-Temporal Traffic Flow Prediction with Sparse Data.
Sensors (Basel). 2020 Oct 24;20(21):6046. doi: 10.3390/s20216046.
8
Forecasting innovations in science, technology, and education.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12573-12581. doi: 10.1073/pnas.1818750115.

本文引用的文献

1
Citywide effects of high-occupancy vehicle restrictions: Evidence from "three-in-one" in Jakarta.
Science. 2017 Jul 7;357(6346):89-93. doi: 10.1126/science.aan2747.
2
The TimeGeo modeling framework for urban motility without travel surveys.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5370-8. doi: 10.1073/pnas.1524261113. Epub 2016 Aug 29.
3
Understanding congested travel in urban areas.
Nat Commun. 2016 Mar 15;7:10793. doi: 10.1038/ncomms10793.
4
The contribution of outdoor air pollution sources to premature mortality on a global scale.
Nature. 2015 Sep 17;525(7569):367-71. doi: 10.1038/nature15371.
5
Percolation transition in dynamical traffic network with evolving critical bottlenecks.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):669-72. doi: 10.1073/pnas.1419185112. Epub 2014 Dec 31.
6
How congestion shapes cities: from mobility patterns to scaling.
Sci Rep. 2014 Jul 3;4:5561. doi: 10.1038/srep05561.
7
The origins of scaling in cities.
Science. 2013 Jun 21;340(6139):1438-41. doi: 10.1126/science.1235823.
8
Urban growth, climate change, and freshwater availability.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6312-7. doi: 10.1073/pnas.1011615108. Epub 2011 Mar 28.
9
The spatial variability of vehicle densities as determinant of urban network capacity.
Philos Trans A Math Phys Eng Sci. 2010 Oct 13;368(1928):4627-47. doi: 10.1098/rsta.2010.0099.
10
Understanding individual human mobility patterns.
Nature. 2008 Jun 5;453(7196):779-82. doi: 10.1038/nature06958.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验