Suppr超能文献

用于检测和诊断自闭症谱系障碍的强大且准确的特征

Robust and Accurate Features for Detecting and Diagnosing Autism Spectrum Disorders.

作者信息

Asgari Meysam, Bayestehtashk Alireza, Shafran Izhak

机构信息

Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA.

出版信息

Interspeech. 2013 Aug;2013:191-194.

Abstract

In this paper, we report experiments on the Interspeech 2013 Autism Challenge, which comprises of two subtasks - detecting children with ASD and classifying them into four subtypes. We apply our recently developed algorithm to extract speech features that overcomes certain weaknesses of other currently available algorithms [1, 2]. From the input speech signal, we estimate the parameters of a harmonic model of the voiced speech for each frame including the fundamental frequency ( ). From the fundamental frequencies and the reconstructed noise-free signal, we compute other derived features such as Harmonic-to-Noise Ratio (HNR), shimmer, and jitter. In previous work, we found that these features detect voiced segments and speech more accurately than other algorithms and that they are useful in rating the severity of a subject's Parkinson's disease [3]. Here, we employ these features, along with standard features such as energy, cepstral, and spectral features. With these features, we detect ASD using a regression and identify the sub-type using a classifier. We find that our features improve the performance, measured in terms of unweighted average recall (UAR), of detecting autism spectrum disorder by 2.3% and classifying the disorder into four categories by 2.8% over the baseline results.

摘要

在本文中,我们报告了关于2013年国际语音会议自闭症挑战赛的实验,该挑战赛包括两个子任务——检测患有自闭症谱系障碍(ASD)的儿童并将他们分为四种亚型。我们应用我们最近开发的算法来提取语音特征,该算法克服了其他现有算法的某些弱点[1,2]。从输入的语音信号中,我们估计每一帧浊音语音的谐波模型参数,包括基频( )。从基频和重构的无噪声信号中,我们计算其他派生特征,如谐波噪声比(HNR)、微扰和抖动。在之前的工作中,我们发现这些特征比其他算法能更准确地检测浊音段和语音,并且它们在评估受试者帕金森病的严重程度方面很有用[3]。在这里,我们使用这些特征,以及诸如能量、倒谱和频谱特征等标准特征。利用这些特征,我们通过回归检测ASD,并使用分类器识别亚型。我们发现,以未加权平均召回率(UAR)衡量,我们的特征在检测自闭症谱系障碍方面比基线结果提高了2.3%,在将该障碍分为四类方面提高了2.8%。

相似文献

2
Predicting severity of Parkinson's disease from speech.通过语音预测帕金森病的严重程度。
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5201-4. doi: 10.1109/IEMBS.2010.5626104.
5
Significance of voiced and unvoiced speech segments for the detection of common cold.有声和无声语音片段对感冒检测的意义。
Signal Image Video Process. 2023;17(5):1785-1792. doi: 10.1007/s11760-022-02389-8. Epub 2022 Nov 15.
6
Speaker diarization during noisy clinical diagnoses of autism.自闭症嘈杂临床诊断过程中的说话人识别
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2593-2596. doi: 10.1109/EMBC.2019.8857247.
10
A Bag of Wavelet Features for Snore Sound Classification.基于小波特征的鼾声分类方法研究。
Ann Biomed Eng. 2019 Apr;47(4):1000-1011. doi: 10.1007/s10439-019-02217-0. Epub 2019 Jan 30.

引用本文的文献

5
AUTOMATIC MEASUREMENT OF AFFECTIVE VALENCE AND AROUSAL IN SPEECH.语音中情感效价和唤醒度的自动测量
Proc IEEE Int Conf Acoust Speech Signal Process. 2014 May;2014:965-969. doi: 10.1109/ICASSP.2014.6853740. Epub 2014 Jul 14.
6
INFERRING CLINICAL DEPRESSION FROM SPEECH AND SPOKEN UTTERANCES.从语音和话语中推断临床抑郁症
IEEE Int Workshop Mach Learn Signal Process. 2014 Sep;2014. doi: 10.1109/mlsp.2014.6958856. Epub 2014 Nov 20.
7
Exploring Autism Spectrum Disorders Using HLT.利用自然语言技术探索自闭症谱系障碍
Proc Conf Assoc Comput Linguist Meet. 2016 Jun;2016:74-84. doi: 10.18653/v1/w16-0308.
8
Robust Harmonic Features for Classification-Based Pitch Estimation.用于基于分类的基音估计的稳健谐波特征
IEEE/ACM Trans Audio Speech Lang Process. 2017 May;25(5):952-964. doi: 10.1109/TASLP.2017.2667879. Epub 2017 Feb 13.

本文引用的文献

1
EXTRACTING CUES FROM SPEECH FOR PREDICTING SEVERITY OF PARKINSON'S DISEASE.从语音中提取线索以预测帕金森病的严重程度
IEEE Int Workshop Mach Learn Signal Process. 2010 Aug-Sep;2010:462-467. doi: 10.1109/MLSP.2010.5589118. Epub 2010 Oct 7.
4
Intonation and emotion in autistic spectrum disorders.自闭症谱系障碍中的语调与情感
J Psycholinguist Res. 2007 Mar;36(2):159-73. doi: 10.1007/s10936-006-9037-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验