Suppr超能文献

从语音中提取线索以预测帕金森病的严重程度

EXTRACTING CUES FROM SPEECH FOR PREDICTING SEVERITY OF PARKINSON'S DISEASE.

作者信息

Asgari Meysam, Shafran Izhak

机构信息

The Center for Spoken Language Understanding, The Oregon Health & Science University, Portland, OR, USA.

出版信息

IEEE Int Workshop Mach Learn Signal Process. 2010 Aug-Sep;2010:462-467. doi: 10.1109/MLSP.2010.5589118. Epub 2010 Oct 7.

Abstract

Speech pathologists often describe voice quality in hypokinetic dysarthria or Parkinsonism as harsh or breathy, which has been largely attributed to incomplete closure of vocal folds. Exploiting its harmonic nature, we separate voiced portion of the speech to obtain an objective estimate of this quality. The utility of the proposed approach was evaluated on predicting 116 clinical ratings of Parkinson's disease on 82 subjects. Our results show that the information extracted from speech, elicited through 3 tasks, can predict the motor subscore (range 0 to 108) of the clinical measure, the Unified Parkinson's Disease Rating Scale, within a mean absolute error of 5.7 and a standard deviation of about 2.0. While still preliminary, our results are significant and demonstrate that the proposed computational approach has promising real-world applications such as in home-based assessment or in telemonitoring of Parkinson's disease.

摘要

言语病理学家经常将运动减少型构音障碍或帕金森症中的嗓音质量描述为粗糙或呼吸音重,这在很大程度上归因于声带闭合不完全。利用其谐波性质,我们分离出语音的浊音部分以获得对这种质量的客观估计。在预测82名受试者的116项帕金森病临床评分时,对所提出方法的效用进行了评估。我们的结果表明,通过3项任务引出的语音中提取的信息,可以在平均绝对误差为5.7且标准差约为2.0的范围内预测临床测量工具统一帕金森病评定量表的运动子评分(范围为0至108)。虽然仍处于初步阶段,但我们的结果意义重大,并表明所提出的计算方法在诸如帕金森病的家庭评估或远程监测等实际应用中具有广阔前景。

相似文献

1
EXTRACTING CUES FROM SPEECH FOR PREDICTING SEVERITY OF PARKINSON'S DISEASE.从语音中提取线索以预测帕金森病的严重程度
IEEE Int Workshop Mach Learn Signal Process. 2010 Aug-Sep;2010:462-467. doi: 10.1109/MLSP.2010.5589118. Epub 2010 Oct 7.
2
Predicting severity of Parkinson's disease from speech.通过语音预测帕金森病的严重程度。
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5201-4. doi: 10.1109/IEMBS.2010.5626104.

引用本文的文献

本文引用的文献

6
Estimating the support of a high-dimensional distribution.估计高维分布的支撑集。
Neural Comput. 2001 Jul;13(7):1443-71. doi: 10.1162/089976601750264965.
7
New support vector algorithms.新的支持向量算法。
Neural Comput. 2000 May;12(5):1207-45. doi: 10.1162/089976600300015565.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验