Discovery and Translational Research, Biologics Development Sciences, Janssen Biotherapeutics, Spring House, Pennsylvania, USA.
CPT Pharmacometrics Syst Pharmacol. 2021 Apr;10(4):362-376. doi: 10.1002/psp4.12598. Epub 2021 Mar 24.
Despite tremendous success of chimeric antigen receptor (CAR) T cell therapy in clinical oncology, the dose-exposure-response relationship of CAR-T cells in patients is poorly understood. Moreover, the key drug-specific and system-specific determinants leading to favorable clinical outcomes are also unknown. Here we have developed a multiscale mechanistic pharmacokinetic (PK)-pharmacodynamic (PD) model for anti-B-cell maturation antigen (BCMA) CAR-T cell therapy (bb2121) to characterize (i) in vitro target cell killing in multiple BCMA expressing tumor cell lines at varying effector to target cell ratios, (ii) preclinical in vivo tumor growth inhibition and blood CAR-T cell expansion in xenograft mice, and (iii) clinical PK and PD biomarkers in patients with multiple myeloma. Our translational PK-PD relationship was able to effectively describe the commonly observed multiphasic CAR-T cell PK profile in the clinic, consisting of the rapid distribution, expansion, contraction, and persistent phases, and accounted for the categorical individual responses in multiple myeloma to effectively calculate progression-free survival rates. Preclinical and clinical data analysis revealed comparable parameter estimates pertaining to CAR-T cell functionality and suggested that patient baseline tumor burden could be more sensitive than dose levels toward overall extent of exposure after CAR-T cell infusion. Virtual patient simulations also suggested a very steep dose-exposure-response relationship with CAR-T cell therapy and indicated the presence of a "threshold" dose, beyond which a flat dose-response curve could be observed. Our simulations were concordant with multiple clinical observations discussed in this article. Moving forward, this framework could be leveraged a priori to explore multiple infusions and support the preclinical/clinical development of future CAR-T cell therapies.
尽管嵌合抗原受体 (CAR) T 细胞疗法在肿瘤临床治疗中取得了巨大成功,但患者体内 CAR-T 细胞的剂量-暴露-反应关系仍不清楚。此外,导致有利临床结局的关键药物特异性和系统特异性决定因素也尚不清楚。在这里,我们开发了一种用于抗 B 细胞成熟抗原 (BCMA) CAR-T 细胞治疗 (bb2121) 的多尺度机制药代动力学 (PK)-药效动力学 (PD) 模型,以表征 (i) 在不同效应细胞与靶细胞比下,多种表达 BCMA 的肿瘤细胞系中体外的靶细胞杀伤作用,(ii) 异种移植小鼠体内的临床前抗肿瘤生长抑制和血液 CAR-T 细胞扩增,以及 (iii) 多发性骨髓瘤患者的临床 PK 和 PD 生物标志物。我们的转化 PK-PD 关系能够有效地描述临床上常见的多相 CAR-T 细胞 PK 特征,包括快速分布、扩增、收缩和持续阶段,并解释多发性骨髓瘤中常见的个体反应,有效地计算无进展生存率。临床前和临床数据分析显示,与 CAR-T 细胞功能相关的可比参数估计值表明,患者基线肿瘤负担可能比剂量水平对 CAR-T 细胞输注后的总体暴露程度更敏感。虚拟患者模拟也表明,CAR-T 细胞治疗的剂量-暴露-反应关系非常陡峭,并表明存在一个“阈值”剂量,超过该剂量后,可以观察到平坦的剂量反应曲线。我们的模拟与本文讨论的多个临床观察结果一致。未来,该框架可以被预先利用来探索多次输注,并支持未来 CAR-T 细胞疗法的临床前/临床开发。