Suppr超能文献

以铜(II)-甜菜碱配合物的形态为从离子液体中进行电化学铜沉积的起点。

Speciation of Copper(II)-Betaine Complexes as Starting Point for Electrochemical Copper Deposition from Ionic Liquids.

作者信息

Richter Janine, Knies Maximilian, Ruck Michael

机构信息

Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.

Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.

出版信息

ChemistryOpen. 2021 Feb;10(2):97-109. doi: 10.1002/open.202000231. Epub 2020 Dec 1.

Abstract

The application of ionic liquids for the dissolution of metal oxides is a promising field for the development of more energy- and resource-efficient metallurgical processes. Using such solutions for the production of valuable chemicals or electrochemical metal deposition requires a detailed understanding of the chemical system and the factors influencing it. In the present work, several compounds are reported that crystallize after the dissolution of copper(II) oxide in the ionic liquid [Hbet][NTf ]. Dependent on the initial amount of chloride, the reaction temperature and the purity of the reagent, copper crystallizes in complexes with varying coordination geometries and ligands. Subsequently, the influence of these different complex species on electrochemical properties is shown. For the first time, copper is deposited from the ionic liquid [Hbet][NTf ], giving promising opportunities for more resource-efficient copper plating. The copper coatings were analyzed by SEM and EDX measurements. Furthermore, a mechanism for the decomposition of [Hbet][NTf ] in the presence of chloride is suggested and supported by experimental evidence.

摘要

离子液体在金属氧化物溶解方面的应用是开发更节能、资源高效的冶金工艺的一个有前景的领域。将此类溶液用于生产有价值的化学品或进行电化学金属沉积,需要详细了解化学体系及其影响因素。在本工作中,报道了几种在氧化铜溶解于离子液体[Hbet][NTf]后结晶的化合物。根据氯化物的初始量、反应温度和试剂纯度,铜会以具有不同配位几何结构和配体的配合物形式结晶。随后,展示了这些不同配合物对电化学性质的影响。首次从离子液体[Hbet][NTf]中沉积出铜,为更资源高效的镀铜提供了有前景的机会。通过扫描电子显微镜(SEM)和能谱分析(EDX)测量对铜涂层进行了分析。此外,提出了在氯化物存在下[Hbet][NTf]分解的机理,并得到了实验证据的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4cf/7874252/333a68b053e0/OPEN-10-97-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验