Suppr超能文献

具有时变参数的广义线性单粒子跟踪模型的估计算法。

An Estimation Algorithm for General Linear Single Particle Tracking Models with Time-Varying Parameters.

机构信息

Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.

Division of Systems Engineering, Boston University, Boston, MA 02215, USA.

出版信息

Molecules. 2021 Feb 8;26(4):886. doi: 10.3390/molecules26040886.

Abstract

Single Particle Tracking (SPT) is a powerful class of methods for studying the dynamics of biomolecules inside living cells. The techniques reveal the trajectories of individual particles, with a resolution well below the diffraction limit of light, and from them the parameters defining the motion model, such as diffusion coefficients and confinement lengths. Most existing algorithms assume these parameters are constant throughout an experiment. However, it has been demonstrated that they often vary with time as the tracked particles move through different regions in the cell or as conditions inside the cell change in response to stimuli. In this work, we propose an estimation algorithm to determine time-varying parameters of systems that discretely switch between different linear models of motion with Gaussian noise statistics, covering dynamics such as diffusion, directed motion, and Ornstein-Uhlenbeck dynamics. Our algorithm consists of three stages. In the first stage, we use a sliding window approach, combined with Expectation Maximization (EM) to determine maximum likelihood estimates of the parameters as a function of time. These results are only used to roughly estimate the number of model switches that occur in the data to guide the selection of algorithm parameters in the second stage. In the second stage, we use Change Detection (CD) techniques to identify where the models switch, taking advantage of the off-line nature of the analysis of SPT data to create non-causal algorithms with better precision than a purely causal approach. Finally, we apply EM to each set of data between the change points to determine final parameter estimates. We demonstrate our approach using experimental data generated in the lab under controlled conditions.

摘要

单颗粒追踪 (SPT) 是一类用于研究活细胞内生物分子动力学的强大方法。该技术揭示了单个粒子的轨迹,其分辨率远低于光的衍射极限,并且可以从这些轨迹中得出定义运动模型的参数,例如扩散系数和限制长度。大多数现有的算法都假设这些参数在整个实验过程中是恒定的。然而,已经证明它们通常会随着被跟踪的粒子在细胞中移动到不同的区域或细胞内部的条件因响应刺激而变化而随时间变化。在这项工作中,我们提出了一种估计算法,以确定具有高斯噪声统计的不同线性运动模型之间离散切换的系统的时变参数,涵盖了扩散、定向运动和 Ornstein-Uhlenbeck 动力学等动力学。我们的算法由三个阶段组成。在第一阶段,我们使用滑动窗口方法,结合期望最大化 (EM) 来确定参数随时间的最大似然估计。这些结果仅用于粗略估计数据中发生模型切换的次数,以指导在第二阶段选择算法参数。在第二阶段,我们利用 SPT 数据离线分析的优势,使用变化检测 (CD) 技术来识别模型何时切换,从而创建比纯因果方法具有更好精度的非因果算法。最后,我们在变化点之间的每组数据上应用 EM 来确定最终的参数估计。我们使用在受控条件下在实验室中生成的实验数据来演示我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/426c/7915553/e3b821fb1148/molecules-26-00886-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验