Suppr超能文献

Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears.

作者信息

Moore B C, Glasberg B R

机构信息

Department of Experimental Psychology, University of Cambridge, England.

出版信息

J Acoust Soc Am. 1988 Mar;83(3):1093-101. doi: 10.1121/1.396054.

Abstract

Thresholds for the detection of temporal gaps were measured using two types of signals to mark the gaps: bandpass-filtered noises and sinusoids. The first experiment used seven subjects with relatively flat unilateral moderate cochlear hearing loss. The normal ear of each subject was tested both at the same sound-pressure level (SPL) as the impaired ear, and at the same sensation level (SL). Background noise was used to mask spectral "splatter" associated with the gap. For the noise markers, gap thresholds tended to be larger for the impaired ears than for the normal ears when the comparison was made at equal SPL; the difference was reduced, but not eliminated, when the comparison was made at equal SL. Gap thresholds for both the normal and impaired ears decreased as the center frequency increased from 0.5 to 2.0 kHz. For the sinusoidal markers, gap thresholds were often similar for the normal and impaired ears when tested at equal SPL, and were larger for the normal ears when tested at equal SL. Gap thresholds did not change systematically with frequency. Gap thresholds using sinusoidal markers were smaller than those using noise markers. In the second experiment, three subjects with single-channel cochlear implants were tested. Gap thresholds for noise bands tended to increase with increasing center frequency when the noise bandwidth was fixed, and to decrease with increasing bandwidth when the center frequency was fixed. Gap thresholds for sinusoids did not change with center frequency, but decreased markedly with increasing level. Gap thresholds for sinusoids were considerably smaller than those for noise bands.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验