Suppr超能文献

一种用于基于运动想象的脑机接口的新型转移支持矩阵机。

A Novel Transfer Support Matrix Machine for Motor Imagery-Based Brain Computer Interface.

作者信息

Chen Yan, Hang Wenlong, Liang Shuang, Liu Xuejun, Li Guanglin, Wang Qiong, Qin Jing, Choi Kup-Sze

机构信息

School of Computer Science and Technology, Nanjing Tech University, Nanjing, China.

Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China.

出版信息

Front Neurosci. 2020 Nov 23;14:606949. doi: 10.3389/fnins.2020.606949. eCollection 2020.

Abstract

In recent years, emerging matrix learning methods have shown promising performance in motor imagery (MI)-based brain-computer interfaces (BCIs). Nonetheless, the electroencephalography (EEG) pattern variations among different subjects necessitates collecting a large amount of labeled individual data for model training, which prolongs the calibration session. From the perspective of transfer learning, the model knowledge inherent in reference subjects incorporating few target EEG data have the potential to solve the above issue. Thus, a novel knowledge-leverage-based support matrix machine (KL-SMM) was developed to improve the classification performance when only a few labeled EEG data in the target domain (target subject) were available. The proposed KL-SMM possesses the powerful capability of a matrix learning machine, which allows it to directly learn the structural information from matrix-form EEG data. In addition, the KL-SMM can not only fully leverage few labeled EEG data from the target domain during the learning procedure but can also leverage the existing model knowledge from the source domain (source subject). Therefore, the KL-SMM can enhance the generalization performance of the target classifier while guaranteeing privacy protection to a certain extent. Finally, the objective function of the KL-SMM can be easily optimized using the alternating direction method of multipliers method. Extensive experiments were conducted to evaluate the effectiveness of the KL-SMM on publicly available MI-based EEG datasets. Experimental results demonstrated that the KL-SMM outperformed the comparable methods when the EEG data were insufficient.

摘要

近年来,新兴的矩阵学习方法在基于运动想象(MI)的脑机接口(BCI)中表现出了良好的性能。尽管如此,不同受试者之间的脑电图(EEG)模式变化使得需要收集大量带标签的个体数据用于模型训练,这延长了校准过程。从迁移学习的角度来看,包含少量目标EEG数据的参考受试者所固有的模型知识有潜力解决上述问题。因此,开发了一种新颖的基于知识利用的支持矩阵机(KL-SMM),以在目标域(目标受试者)中只有少量带标签的EEG数据可用时提高分类性能。所提出的KL-SMM具有矩阵学习机的强大能力,使其能够直接从矩阵形式的EEG数据中学习结构信息。此外,KL-SMM不仅可以在学习过程中充分利用目标域中少量带标签的EEG数据,还可以利用源域(源受试者)中现有的模型知识。因此,KL-SMM可以提高目标分类器的泛化性能,同时在一定程度上保证隐私保护。最后,KL-SMM的目标函数可以使用乘子交替方向法轻松优化。进行了大量实验以评估KL-SMM在公开可用的基于MI的EEG数据集上的有效性。实验结果表明,当EEG数据不足时,KL-SMM优于可比方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7900/7719793/1e6f3c35d2e9/fnins-14-606949-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验