Suppr超能文献

相似文献

1
Machine learning-based outcome prediction and novel hypotheses generation for substance use disorder treatment.
J Am Med Inform Assoc. 2021 Jun 12;28(6):1216-1224. doi: 10.1093/jamia/ocaa350.
2
Stroke prognostication for discharge planning with machine learning: A derivation study.
J Clin Neurosci. 2020 Sep;79:100-103. doi: 10.1016/j.jocn.2020.07.046. Epub 2020 Aug 5.
3
Use of a machine learning framework to predict substance use disorder treatment success.
PLoS One. 2017 Apr 10;12(4):e0175383. doi: 10.1371/journal.pone.0175383. eCollection 2017.
4
Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.
Burns. 2015 Aug;41(5):925-34. doi: 10.1016/j.burns.2015.03.016. Epub 2015 Apr 27.
5
Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne Pollen.
Int J Environ Res Public Health. 2019 Jun 4;16(11):1992. doi: 10.3390/ijerph16111992.
6
Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models.
Comput Methods Programs Biomed. 2022 Jan;213:106504. doi: 10.1016/j.cmpb.2021.106504. Epub 2021 Oct 28.
7
Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database.
J Card Fail. 2019 Jun;25(6):479-483. doi: 10.1016/j.cardfail.2019.01.018. Epub 2019 Feb 6.
8
Using machine learning to predict opioid misuse among U.S. adolescents.
Prev Med. 2020 Jan;130:105886. doi: 10.1016/j.ypmed.2019.105886. Epub 2019 Nov 6.
9
A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
BMC Med Inform Decis Mak. 2019 Nov 6;19(1):211. doi: 10.1186/s12911-019-0918-5.
10
Predicting Substance Use Treatment Failure with Transfer Learning.
Subst Use Misuse. 2022;57(13):1982-1987. doi: 10.1080/10826084.2022.2125272. Epub 2022 Sep 21.

引用本文的文献

1
A machine learning approach for diagnostic and prognostic predictions, key risk factors and interactions.
Health Serv Outcomes Res Methodol. 2025 Mar;25(1):1-28. doi: 10.1007/s10742-024-00324-7. Epub 2024 Mar 18.
3
Use of machine learning to examine disparities in completion of substance use disorder treatment.
PLoS One. 2022 Sep 23;17(9):e0275054. doi: 10.1371/journal.pone.0275054. eCollection 2022.

本文引用的文献

1
On classifying sepsis heterogeneity in the ICU: insight using machine learning.
J Am Med Inform Assoc. 2020 Mar 1;27(3):437-443. doi: 10.1093/jamia/ocz211.
2
Analysis of substance use and its outcomes by machine learning I. Childhood evaluation of liability to substance use disorder.
Drug Alcohol Depend. 2020 Jan 1;206:107605. doi: 10.1016/j.drugalcdep.2019.107605. Epub 2019 Oct 22.
3
Online Searching and Social Media to Detect Alcohol Use Risk at Population Scale.
Am J Prev Med. 2020 Jan;58(1):79-88. doi: 10.1016/j.amepre.2019.08.027. Epub 2019 Dec 2.
4
Probing for Sparse and Fast Variable Selection with Model-Based Boosting.
Comput Math Methods Med. 2017;2017:1421409. doi: 10.1155/2017/1421409. Epub 2017 Jul 31.
6
Drop-out from addiction treatment: a systematic review of risk factors.
Clin Psychol Rev. 2013 Dec;33(8):1010-24. doi: 10.1016/j.cpr.2013.07.007. Epub 2013 Jul 31.
7
What could the program have done differently? A qualitative examination of reasons for leaving outpatient treatment.
J Subst Abuse Treat. 2009 Sep;37(2):182-90. doi: 10.1016/j.jsat.2009.01.001. Epub 2009 Mar 31.
8
Does retention matter? Treatment duration and improvement in drug use.
Addiction. 2003 May;98(5):673-84. doi: 10.1046/j.1360-0443.2003.00354.x.
9
A comparison of goodness-of-fit tests for the logistic regression model.
Stat Med. 1997 May 15;16(9):965-80. doi: 10.1002/(sici)1097-0258(19970515)16:9<965::aid-sim509>3.0.co;2-o.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验