Suppr超能文献

基于机器学习的出院计划中风预后预测:一项推导研究。

Stroke prognostication for discharge planning with machine learning: A derivation study.

机构信息

Royal Adelaide Hospital, Adelaide, SA 5000, Australia; University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.

Royal Adelaide Hospital, Adelaide, SA 5000, Australia; University of Adelaide, Adelaide, SA 5005, Australia.

出版信息

J Clin Neurosci. 2020 Sep;79:100-103. doi: 10.1016/j.jocn.2020.07.046. Epub 2020 Aug 5.

Abstract

Post-stroke discharge planning may be aided by accurate early prognostication. Machine learning may be able to assist with such prognostication. The study's primary aim was to evaluate the performance of machine learning models using admission data to predict the likely length of stay (LOS) for patients admitted with stroke. Secondary aims included the prediction of discharge modified Rankin Scale (mRS), in-hospital mortality, and discharge destination. In this study a retrospective dataset was used to develop and test a variety of machine learning models. The patients included in the study were all stroke admissions (both ischaemic stroke and intracerebral haemorrhage) at a single tertiary hospital between December 2016 and September 2019. The machine learning models developed and tested (75%/25% train/test split) included logistic regression, random forests, decision trees and artificial neural networks. The study included 2840 patients. In LOS prediction the highest area under the receiver operator curve (AUC) was achieved on the unseen test dataset by an artificial neural network at 0.67. Higher AUC were achieved using logistic regression models in the prediction of discharge functional independence (mRS ≤2) (AUC 0.90) and in the prediction of in-hospital mortality (AUC 0.90). Logistic regression was also the best performing model for predicting home vs non-home discharge destination (AUC 0.81). This study indicates that machine learning may aid in the prognostication of factors relevant to post-stroke discharge planning. Further prospective and external validation is required, as well as assessment of the impact of subsequent implementation.

摘要

卒中后出院计划可能需要准确的早期预后。机器学习可能有助于这种预后。该研究的主要目的是使用入院数据评估机器学习模型的性能,以预测因卒中入院患者的可能住院时间 (LOS)。次要目标包括预测出院改良 Rankin 量表 (mRS)、住院死亡率和出院去向。在这项研究中,使用回顾性数据集开发和测试了多种机器学习模型。研究中包括的患者均为 2016 年 12 月至 2019 年 9 月在一家三级医院因卒中入院的患者(包括缺血性卒中和颅内出血)。开发和测试的机器学习模型(75%/25% 训练/测试拆分)包括逻辑回归、随机森林、决策树和人工神经网络。该研究共纳入 2840 例患者。在 LOS 预测中,人工神经网络在未见过的测试数据集中的 AUC 最高,为 0.67。在预测出院功能独立性(mRS ≤2)(AUC 0.90)和预测住院死亡率(AUC 0.90)方面,逻辑回归模型的 AUC 更高。逻辑回归也是预测家庭与非家庭出院目的地(AUC 0.81)的最佳模型。本研究表明,机器学习可能有助于预测与卒中后出院计划相关的预后因素。需要进一步的前瞻性和外部验证,以及对后续实施的影响进行评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验