Lu Changhai, Li Xinru, Wu Qian, Li Juan, Wen Long, Dai Ying, Huang Baibiao, Li Baojun, Lou Zaizhu
Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
Shenzhen University, Shenzhen, 518060, China.
ACS Nano. 2021 Feb 23;15(2):3529-3539. doi: 10.1021/acsnano.1c00452. Epub 2021 Feb 11.
Plasmonic BiWO with strong localized surface plasmon resonance (LSPR) around the 500-1400 region is successfully constructed by electron doping. Oxygen vacancies on W-O-W (V1) and Bi-O-Bi (V2) sites are precisely controlled to obtain BiWO-V with LSPR and BiWO-V with defect absorption. Density functional theory (DFT) calculation demonstrates that the V1-induced energy state facilitates photoelectron collection for a long lifetime, resulting in LSPR of BiWO. Photoelectron trapping on V1 sites is demonstrated by a single-particle photoluminescence (PL) study, and 93% PL quenching efficiency is observed. With strong LSPR, plasmonic BiWO-V exhibits highly selective methane generation with a rate of 9.95 μmol g h during the CO reduction reaction (CO-RR), which is 26-fold higher than 0.37 μmol g h of BiWO-V under UV-visible light irradiation. LSPR-dependent methane generation is confirmed by various photocatalytic results of plasmonic BiWO with tunable LSPR and different light excitations. Furthermore, the DFT-simulated pathway of CO-RR and Fourier transform infrared spectra on the surface of BiWO prove that V1 sites facilitate CH generation. Our work provides a strategy to obtain nonmetallic plasmonic materials by electron doping.
通过电子掺杂成功构建了在500-1400区域具有强局域表面等离子体共振(LSPR)的等离子体BiWO。精确控制W-O-W(V1)和Bi-O-Bi(V2)位点上的氧空位,以获得具有LSPR的BiWO-V和具有缺陷吸收的BiWO-V。密度泛函理论(DFT)计算表明,V1诱导的能态有助于光电子的长时间收集,从而产生BiWO的LSPR。单粒子光致发光(PL)研究证明了光电子在V1位点上的捕获,并且观察到93%的PL猝灭效率。由于具有强LSPR,等离子体BiWO-V在CO还原反应(CO-RR)期间表现出高选择性的甲烷生成,速率为9.95 μmol g h,这比在紫外-可见光照射下BiWO-V的0.37 μmol g h高26倍。具有可调LSPR的等离子体BiWO的各种光催化结果和不同的光激发证实了LSPR依赖的甲烷生成。此外,DFT模拟的CO-RR途径和BiWO表面的傅里叶变换红外光谱证明V1位点促进CH的生成。我们的工作提供了一种通过电子掺杂获得非金属等离子体材料的策略。