Suppr超能文献

用于合成双组分纳米晶体的等离子体介导光化学与种子介导方法的结合

Combination of Plasmon-Mediated Photochemistry and Seed-Mediated Methods for Synthesis of Bicomponent Nanocrystals.

作者信息

Cheng Hsien-Tai, Huang Ming-Shiuan, Hsu Su-Wen

机构信息

Department of Chemical Engineering, Nation Cheng Kung University, Taiwan No. 1 University Road, East Dist., Tainan City 70101, Taiwan (R.O.C).

出版信息

ACS Omega. 2022 Aug 16;7(34):30622-30631. doi: 10.1021/acsomega.2c04349. eCollection 2022 Aug 30.

Abstract

Plasmon resonances of metal nanocrystals resulted from free electrons oscillating around nanocrystals, leading to a strong electromagnetic field around them. Because these oscillating electrons possess higher energy than the original ones, also known as hot electrons, these were widely used as photocatalysts for various reactions. Also, the strength and distribution of the electromagnetic field around the nanocrystals strongly depended on their morphology and excited irradiation, which led to the reaction environment around nanocrystals being controllable. Here, we integrated the seed-mediated and plasmon-mediated photochemistry methods for fabricating bimetallic and semiconductor-metal nanocrystals with controllable morphologies and compositions of the nanocrystals, resulting from the highly anisotropic reaction environment around the nanocrystals. The highly anisotropic reaction environment around the template nanocrystal was caused by the distribution of electromagnetic fields around it and its exposure area in the reaction solution. This new synthesis method should enable the fabrication of various multicomponent nanocrystals with desirable functions for potential applications, such as photocatalysts, chemical sensors, biosensors, biomedicines, etc.

摘要

金属纳米晶体的表面等离子体共振是由纳米晶体周围自由电子的振荡引起的,这导致其周围产生强电磁场。由于这些振荡电子比原始电子具有更高的能量,也被称为热电子,它们被广泛用作各种反应的光催化剂。此外,纳米晶体周围电磁场的强度和分布强烈依赖于其形态和激发辐射,这使得纳米晶体周围的反应环境可控。在这里,我们整合了种子介导和等离子体介导的光化学方法,用于制备具有可控形态和组成的双金属和半导体-金属纳米晶体,这是由纳米晶体周围高度各向异性的反应环境导致的。模板纳米晶体周围高度各向异性的反应环境是由其周围电磁场的分布及其在反应溶液中的暴露面积引起的。这种新的合成方法应该能够制造出具有理想功能的各种多组分纳米晶体,用于潜在应用,如光催化剂、化学传感器、生物传感器、生物医学等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5483/9434765/35726024c610/ao2c04349_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验