Steuten Kas, Kim Heeyoung, Widen John C, Babin Brett M, Onguka Ouma, Lovell Scott, Bolgi Oguz, Cerikan Berati, Neufeldt Christopher J, Cortese Mirko, Muir Ryan K, Bennett John M, Geiss-Friedlander Ruth, Peters Christoph, Bartenschlager Ralf, Bogyo Matthew
Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States.
Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg 69120, Germany.
ACS Infect Dis. 2021 Jun 11;7(6):1457-1468. doi: 10.1021/acsinfecdis.0c00815. Epub 2021 Feb 11.
Two proteases produced by the SARS-CoV-2 virus, the main protease and papain-like protease, are essential for viral replication and have become the focus of drug development programs for treatment of COVID-19. We screened a highly focused library of compounds containing covalent warheads designed to target cysteine proteases to identify new lead scaffolds for both M and PL proteases. These efforts identified a small number of hits for the M protease and no viable hits for the PL protease. Of the M hits identified as inhibitors of the purified recombinant protease, only two compounds inhibited viral infectivity in cellular infection assays. However, we observed a substantial drop in antiviral potency upon expression of TMPRSS2, a transmembrane serine protease that acts in an alternative viral entry pathway to the lysosomal cathepsins. This loss of potency is explained by the fact that our lead M inhibitors are also potent inhibitors of host cell cysteine cathepsins. To determine if this is a general property of M inhibitors, we evaluated several recently reported compounds and found that they are also effective inhibitors of purified human cathepsins L and B and showed similar loss in activity in cells expressing TMPRSS2. Our results highlight the challenges of targeting M and PL proteases and demonstrate the need to carefully assess selectivity of SARS-CoV-2 protease inhibitors to prevent clinical advancement of compounds that function through inhibition of a redundant viral entry pathway.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)产生的两种蛋白酶,即主要蛋白酶和类木瓜蛋白酶,对病毒复制至关重要,已成为治疗新冠肺炎药物研发项目的重点。我们筛选了一个高度聚焦的化合物库,其中包含旨在靶向半胱氨酸蛋白酶的共价弹头,以鉴定针对M蛋白酶和PL蛋白酶的新先导支架。这些研究为M蛋白酶找到了少量命中化合物,而未找到针对PL蛋白酶的可行命中化合物。在鉴定为纯化重组蛋白酶抑制剂的M命中化合物中,只有两种化合物在细胞感染试验中抑制了病毒感染性。然而,当跨膜丝氨酸蛋白酶TMPRSS2表达时,我们观察到抗病毒效力大幅下降,TMPRSS2在替代溶酶体组织蛋白酶的病毒进入途径中起作用。效力的丧失是由于我们的先导M抑制剂也是宿主细胞半胱氨酸组织蛋白酶的有效抑制剂。为了确定这是否是M抑制剂的普遍特性,我们评估了几种最近报道的化合物,发现它们也是纯化的人组织蛋白酶L和B的有效抑制剂,并且在表达TMPRSS2的细胞中表现出类似的活性丧失。我们的结果突出了靶向M和PL蛋白酶的挑战,并表明需要仔细评估SARS-CoV-2蛋白酶抑制剂的选择性,以防止通过抑制冗余病毒进入途径起作用的化合物进入临床阶段。