Suppr超能文献

bouncing the network:听觉-前庭相互作用的动力学系统模型,该模型是婴儿感知音乐节奏的基础。

Bouncing the network: A dynamical systems model of auditory-vestibular interactions underlying infants' perception of musical rhythm.

机构信息

Department of Music, Northeastern University, Boston, MA, USA.

Department of Psychological Sciences, Perception, Action, Cognition (PAC) Division, University of Connecticut, Storrs, CT, USA.

出版信息

Dev Sci. 2021 Sep;24(5):e13103. doi: 10.1111/desc.13103. Epub 2021 Mar 24.

Abstract

Previous work suggests that auditory-vestibular interactions, which emerge during bodily movement to music, can influence the perception of musical rhythm. In a seminal study on the ontogeny of musical rhythm, Phillips-Silver and Trainor (2005) found that bouncing infants to an unaccented rhythm influenced infants' perceptual preferences for accented rhythms that matched the rate of bouncing. In the current study, we ask whether nascent, diffuse coupling between auditory and motor systems is sufficient to bootstrap short-term Hebbian plasticity in the auditory system and explain infants' preferences for accented rhythms thought to arise from auditory-vestibular interactions. First, we specify a nonlinear, dynamical system in which two oscillatory neural networks, representing developmentally nascent auditory and motor systems, interact through weak, non-specific coupling. The auditory network was equipped with short-term Hebbian plasticity, allowing the auditory network to tune its intrinsic resonant properties. Next, we simulate the effect of vestibular input (e.g., infant bouncing) on infants' perceptual preferences for accented rhythms. We found that simultaneous auditory-vestibular training shaped the model's response to musical rhythm, enhancing vestibular-related frequencies in auditory-network activity. Moreover, simultaneous auditory-vestibular training, relative to auditory- or vestibular-only training, facilitated short-term auditory plasticity in the model, producing stronger oscillator connections in the auditory network. Finally, when tested on a musical rhythm, models which received simultaneous auditory-vestibular training, but not models that received auditory- or vestibular-only training, resonated strongly at frequencies related to their "bouncing," a finding qualitatively similar to infants' preferences for accented rhythms that matched the rate of infant bouncing.

摘要

先前的研究表明,在伴随身体运动的听觉-前庭相互作用中,音乐可以影响对音乐节奏的感知。在一项关于音乐节奏发生的开创性研究中,Phillips-Silver 和 Trainor(2005 年)发现,用无重音的节奏摇晃婴儿会影响婴儿对与摇晃速度相匹配的重音节奏的感知偏好。在当前的研究中,我们想知道,听觉和运动系统之间刚刚出现的弥散耦合是否足以引导听觉系统中的短期赫布型可塑性,并解释被认为源自听觉-前庭相互作用的婴儿对重音节奏的偏好。首先,我们指定了一个非线性动力系统,其中两个代表尚未成熟的听觉和运动系统的振荡神经网络通过弱的、非特定的耦合相互作用。听觉网络配备了短期赫布型可塑性,允许听觉网络调整其内在的共振特性。接下来,我们模拟了前庭输入(例如婴儿摇晃)对婴儿对重音节奏的感知偏好的影响。我们发现,同时进行听觉-前庭训练可以塑造模型对音乐节奏的反应,增强听觉网络活动中与前庭相关的频率。此外,与听觉或前庭单独训练相比,同时进行听觉-前庭训练促进了模型中的短期听觉可塑性,在听觉网络中产生了更强的振荡器连接。最后,当在音乐节奏上进行测试时,接受了同时的听觉-前庭训练的模型,但没有接受听觉或前庭单独训练的模型,在与“摇晃”相关的频率上产生了强烈的共鸣,这一发现与婴儿对与婴儿摇晃速度相匹配的重音节奏的偏好定性上相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验