Center for Neural Science, New York University, New York, NY, 10003, USA.
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
Sci Rep. 2024 Nov 2;14(1):26388. doi: 10.1038/s41598-024-77849-x.
Despite music's omnipresence, the specific neural mechanisms responsible for perceiving and anticipating temporal patterns in music are unknown. To study potential mechanisms for keeping time in rhythmic contexts, we train a biologically constrained RNN, with excitatory (E) and inhibitory (I) units, on seven different stimulus tempos (2-8 Hz) on a synchronization and continuation task, a standard experimental paradigm. Our trained RNN generates a network oscillator that uses an input current (context parameter) to control oscillation frequency and replicates key features of neural dynamics observed in neural recordings of monkeys performing the same task. We develop a reduced three-variable rate model of the RNN and analyze its dynamic properties. By treating our understanding of the mathematical structure for oscillations in the reduced model as predictive, we confirm that the dynamical mechanisms are found also in the RNN. Our neurally plausible reduced model reveals an E-I circuit with two distinct inhibitory sub-populations, of which one is tightly synchronized with the excitatory units.
尽管音乐无处不在,但负责感知和预测音乐中时间模式的特定神经机制尚不清楚。为了研究在节奏环境中保持时间的潜在机制,我们在同步和延续任务上,对一个具有兴奋性(E)和抑制性(I)单元的受生物约束的 RNN 进行了训练,该任务使用七个不同的刺激节奏(2-8 Hz)作为标准实验范式。我们训练的 RNN 生成一个网络振荡器,该振荡器使用输入电流(上下文参数)来控制振荡频率,并复制了在执行相同任务的猴子的神经记录中观察到的神经动力学的关键特征。我们开发了 RNN 的简化三变量率模型,并分析了其动态特性。通过将我们对简化模型中振荡的数学结构的理解视为预测性的,我们证实了动力学机制也存在于 RNN 中。我们神经上合理的简化模型揭示了一个具有两个不同抑制亚群的 E-I 电路,其中一个与兴奋性单元紧密同步。