Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):9232-9238. doi: 10.1021/acsami.0c21602. Epub 2021 Feb 11.
A range of plants developed leaves, the surfaces of which prevent or diminish insect adhesion due to their microscopic topography. Well known examples include the leaves of the lychee tree (). Here, we report a method to coat substrates with ethyl cellulose microparticles that exhibit wrinkled surfaces, resulting in surface morphologies that closely resemble those of insect repelling plants, i.e., . The microparticles were prepared by electrospraying, a method that allowed tuning of the particle size and surface morphology. By measuring the traction forces of Colorado potato beetles walking on these surfaces, the wrinkly microsphere parameters were optimized, resulting in biomimetic surfaces that surpass the antiadhesive properties of the biological role model. This study may pave the way to sustainable, nontoxic insecticide replacements.
一系列植物产生了叶子,其表面由于微观形貌而防止或减少了昆虫的附着。众所周知的例子包括荔枝树的叶子()。在这里,我们报告了一种用乙基纤维素微粒涂覆基底的方法,这些微粒具有皱缩的表面,从而产生与驱避昆虫植物非常相似的表面形态,即()。这些微粒是通过静电喷涂制备的,该方法可以调整粒径和表面形态。通过测量在这些表面上行走的科罗拉多马铃薯甲虫的牵引力,对皱缩微球的参数进行了优化,从而产生了仿生表面,其超过了生物模型的抗粘性。这项研究可能为可持续的、无毒杀虫剂替代品铺平道路。