Suppr超能文献

基于深度学习图像重建的低剂量全身 CT:图像质量和病灶检测。

Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection.

机构信息

Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.

Department of Radiology, Frontier Science for Imaging, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.

出版信息

Br J Radiol. 2021 May 1;94(1121):20201329. doi: 10.1259/bjr.20201329. Epub 2021 Feb 22.

Abstract

OBJECTIVES

To evaluate image quality and lesion detection capabilities of low-dose (LD) portal venous phase whole-body computed tomography (CT) using deep learning image reconstruction (DLIR).

METHODS

The study cohort of 59 consecutive patients (mean age, 67.2 years) who underwent whole-body LD CT and a prior standard-dose (SD) CT reconstructed with hybrid iterative reconstruction (SD-IR) within one year for surveillance of malignancy were assessed. The LD CT images were reconstructed with hybrid iterative reconstruction of 40% (LD-IR) and DLIR (LD-DLIR). The radiologists independently evaluated image quality (5-point scale) and lesion detection. Attenuation values in Hounsfield units (HU) of the liver, pancreas, spleen, abdominal aorta, and portal vein; the background noise and signal-to-noise ratio (SNR) of the liver, pancreas, and spleen were calculated. Qualitative and quantitative parameters were compared between the SD-IR, LD-IR, and LD-DLIR images. The CT dose-index volumes (CTDI) and dose-length product (DLP) were compared between SD and LD scans.

RESULTS

The image quality and lesion detection rate of the LD-DLIR was comparable to the SD-IR. The image quality was significantly better in SD-IR than in LD-IR ( < 0.017). The attenuation values of all anatomical structures were comparable between the SD-IR and LD-DLIR ( = 0.28-0.96). However, background noise was significantly lower in the LD-DLIR ( < 0.001) and resulted in improved SNRs ( < 0.001) compared to the SD-IR and LD-IR images. The mean CTDI and DLP were significantly lower in the LD (2.9 mGy and 216.2 mGy•cm) than in the SD (13.5 mGy and 1011.6 mGy•cm) ( < 0.0001).

CONCLUSION

LD CT images reconstructed with DLIR enable radiation dose reduction of >75% while maintaining image quality and lesion detection rate and superior SNR in comparison to SD-IR.

ADVANCES IN KNOWLEDGE

Deep learning image reconstruction algorithm enables around 80% reduction in radiation dose while maintaining the image quality and lesion detection compared to standard-dose whole-body CT.

摘要

目的

评估使用深度学习图像重建(DLIR)的低剂量(LD)门静脉期全身 CT 的图像质量和病灶检出能力。

方法

该研究纳入了 59 例连续患者(平均年龄,67.2 岁),他们在一年内因恶性肿瘤监测而行全身 LD CT 检查,其中 40%的 LD CT 图像使用混合迭代重建(LD-IR)和 DLIR(LD-DLIR)进行重建,1 例采用标准剂量(SD)CT 进行重建(SD-IR)。放射科医生独立评估图像质量(5 分制)和病灶检出情况。计算肝脏、胰腺、脾脏、腹主动脉和门静脉的 CT 值(HU)、背景噪声和肝脏、胰腺和脾脏的信噪比(SNR)。比较 SD-IR、LD-IR 和 LD-DLIR 图像之间的定性和定量参数。比较 SD 和 LD 扫描之间的 CT 剂量指数容积(CTDI)和剂量长度乘积(DLP)。

结果

LD-DLIR 的图像质量和病灶检出率与 SD-IR 相当。SD-IR 的图像质量明显优于 LD-IR(<0.017)。SD-IR 和 LD-DLIR 之间所有解剖结构的 CT 值均无显著差异(=0.28-0.96)。然而,LD-DLIR 的背景噪声显著降低(<0.001),与 SD-IR 和 LD-IR 图像相比,SNR 显著提高(<0.001)。LD(2.9 mGy 和 216.2 mGy•cm)的 CTDI 和 DLP 明显低于 SD(13.5 mGy 和 1011.6 mGy•cm)(<0.0001)。

结论

与 SD-IR 相比,使用 DLIR 重建的 LD CT 图像可使辐射剂量降低>75%,同时保持图像质量和病灶检出率以及更高的 SNR。

知识进展

深度学习图像重建算法可使全身 CT 标准剂量减少约 80%,同时保持图像质量和病灶检出率。

相似文献

1
Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection.
Br J Radiol. 2021 May 1;94(1121):20201329. doi: 10.1259/bjr.20201329. Epub 2021 Feb 22.
2
Deep learning image reconstruction for pancreatic low-dose computed tomography: comparison with hybrid iterative reconstruction.
Abdom Radiol (NY). 2021 Sep;46(9):4238-4244. doi: 10.1007/s00261-021-03111-x. Epub 2021 May 11.
3
Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy.
Eur Radiol. 2024 Jan;34(1):28-38. doi: 10.1007/s00330-023-10033-3. Epub 2023 Aug 2.
8
Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction.
Korean J Radiol. 2022 Apr;23(4):402-412. doi: 10.3348/kjr.2021.0683. Epub 2022 Jan 27.
10
Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?
Eur Radiol. 2023 Mar;33(3):1629-1640. doi: 10.1007/s00330-022-09206-3. Epub 2022 Nov 3.

引用本文的文献

6
Optimizing computed tomography image reconstruction for focal hepatic lesions: Deep learning image reconstruction vs iterative reconstruction.
Heliyon. 2024 Jul 18;10(15):e34847. doi: 10.1016/j.heliyon.2024.e34847. eCollection 2024 Aug 15.
7
Systematic Review on Learning-based Spectral CT.
IEEE Trans Radiat Plasma Med Sci. 2024 Feb;8(2):113-137. doi: 10.1109/trpms.2023.3314131. Epub 2023 Sep 12.
8
Deep learning reconstruction vs standard reconstruction for abdominal CT: the influence of BMI.
Eur Radiol. 2024 Mar;34(3):1614-1623. doi: 10.1007/s00330-023-10179-0. Epub 2023 Aug 31.
9
Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy.
Eur Radiol. 2024 Jan;34(1):28-38. doi: 10.1007/s00330-023-10033-3. Epub 2023 Aug 2.
10
Systematic Review on Learning-based Spectral CT.
ArXiv. 2024 Sep 25:arXiv:2304.07588v9.

本文引用的文献

1
Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study.
Eur Radiol. 2020 Jul;30(7):3951-3959. doi: 10.1007/s00330-020-06724-w. Epub 2020 Feb 25.
3
Small Bowel Crohn Disease at CT and MR Enterography: Imaging Atlas and Glossary of Terms.
Radiographics. 2020 Mar-Apr;40(2):354-375. doi: 10.1148/rg.2020190091. Epub 2020 Jan 17.
5
Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.
Eur Radiol. 2019 Nov;29(11):6163-6171. doi: 10.1007/s00330-019-06170-3. Epub 2019 Apr 11.
7
Low-dose CT imaging of the acute abdomen using model-based iterative reconstruction: a prospective study.
Emerg Radiol. 2019 Apr;26(2):169-177. doi: 10.1007/s10140-018-1658-z. Epub 2018 Nov 17.
9
Renovascular CT: comparison between adaptive statistical iterative reconstruction and model-based iterative reconstruction.
Clin Radiol. 2017 Oct;72(10):901.e13-901.e19. doi: 10.1016/j.crad.2017.06.002. Epub 2017 Jun 30.
10
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.
J Chiropr Med. 2016 Jun;15(2):155-63. doi: 10.1016/j.jcm.2016.02.012. Epub 2016 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验