Suppr超能文献

优化肝脏局灶性病变的计算机断层扫描图像重建:深度学习图像重建与迭代重建

Optimizing computed tomography image reconstruction for focal hepatic lesions: Deep learning image reconstruction vs iterative reconstruction.

作者信息

Jaruvongvanich Varin, Muangsomboon Kobkun, Teerasamit Wanwarang, Suvannarerg Voraparee, Komoltri Chulaluk, Thammakittiphan Sastrawut, Lornimitdee Wimonrat, Ritsamrej Witchuda, Chaisue Parinya, Pongnapang Napapong, Apisarnthanarak Piyaporn

机构信息

Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Division of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

出版信息

Heliyon. 2024 Jul 18;10(15):e34847. doi: 10.1016/j.heliyon.2024.e34847. eCollection 2024 Aug 15.

Abstract

BACKGROUND

Deep learning image reconstruction (DLIR) is a novel computed tomography (CT) reconstruction technique that minimizes image noise, enhances image quality, and enables radiation dose reduction. This study aims to compare the diagnostic performance of DLIR and iterative reconstruction (IR) in the evaluation of focal hepatic lesions.

METHODS

We conducted a retrospective study of 216 focal hepatic lesions in 109 adult participants who underwent abdominal CT scanning at our institution. We used DLIR (low, medium, and high strength) and IR (0 %, 10 %, 20 %, and 30 %) techniques for image reconstruction. Four experienced abdominal radiologists independently evaluated focal hepatic lesions based on five qualitative aspects (lesion detectability, lesion border, diagnostic confidence level, image artifact, and overall image quality). Quantitatively, we measured and compared the level of image noise for each technique at the liver and aorta.

RESULTS

There were significant differences ( < 0.001) among the seven reconstruction techniques in terms of lesion borders, image artifacts, and overall image quality. Low-strength DLIR (DLIR-L) exhibited the best overall image quality. Although high-strength DLIR (DLIR-H) had the least image noise and fewest artifacts, it also had the lowest scores for lesion borders and overall image quality. Image noise showed a weak to moderate positive correlation with participants' body mass index and waist circumference.

CONCLUSIONS

The optimal-strength DLIR significantly improved overall image quality for evaluating focal hepatic lesions compared to the IR technique. DLIR-L achieved the best overall image quality while maintaining acceptable levels of image noise and quality of lesion borders.

摘要

背景

深度学习图像重建(DLIR)是一种新型的计算机断层扫描(CT)重建技术,可将图像噪声降至最低,提高图像质量,并能降低辐射剂量。本研究旨在比较DLIR和迭代重建(IR)在评估肝脏局灶性病变中的诊断性能。

方法

我们对在本机构接受腹部CT扫描的109名成年参与者中的216个肝脏局灶性病变进行了回顾性研究。我们使用DLIR(低、中、高强度)和IR(0%、10%、20%和30%)技术进行图像重建。四名经验丰富的腹部放射科医生基于五个定性方面(病变可检测性、病变边界、诊断置信水平、图像伪影和整体图像质量)独立评估肝脏局灶性病变。在定量方面,我们测量并比较了每种技术在肝脏和主动脉处的图像噪声水平。

结果

在病变边界、图像伪影和整体图像质量方面,七种重建技术之间存在显著差异(<0.001)。低强度DLIR(DLIR-L)表现出最佳的整体图像质量。虽然高强度DLIR(DLIR-H)的图像噪声最少且伪影最少,但其在病变边界和整体图像质量方面的得分也最低。图像噪声与参与者的体重指数和腰围呈弱至中度正相关。

结论

与IR技术相比,最佳强度的DLIR在评估肝脏局灶性病变时显著提高了整体图像质量。DLIR-L在保持可接受的图像噪声水平和病变边界质量的同时,实现了最佳的整体图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4065/11336302/38600809ed75/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验