The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
Cell. 2021 Feb 18;184(4):931-942.e18. doi: 10.1016/j.cell.2021.01.027. Epub 2021 Feb 10.
The D1- and D2-dopamine receptors (D1R and D2R), which signal through G and G, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-G and D2R-G signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.
D1- 和 D2-多巴胺受体(D1R 和 D2R)分别通过 G 和 G 信号转导,代表中枢神经系统中主要的兴奋性和抑制性多巴胺受体。D1R 和 D2R 也是治疗帕金森病、精神分裂症和许多其他神经精神疾病的主要靶点,深入了解其信号转导对于理解多巴胺能药物的治疗效果和副作用至关重要。在这里,我们报告了四个 D1R-G 和 D2R-G 信号复合物的低温电子显微镜(cryo-EM)结构,这些复合物与选择性和非选择性多巴胺激动剂结合,包括两种目前用于治疗帕金森病的药物,阿扑吗啡和溴隐亭。这些结构以及突变研究揭示了多巴胺激动剂的保守结合模式、配体选择性背后的独特口袋拓扑结构、受体激活的构象变化以及 G 蛋白偶联选择性的潜在结构决定因素。这些结果为多巴胺信号转导提供了分子理解,并为针对多巴胺能系统的药物设计提供了多个结构模板。