UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States.
UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
Nanomedicine. 2021 Jun;34:102365. doi: 10.1016/j.nano.2021.102365. Epub 2021 Feb 9.
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
心血管损伤后,大量的病理过程对心肌细胞、巨噬细胞、成纤维细胞、内皮细胞和血管平滑肌细胞群的稳态功能产生不利影响。这些细胞的后续功能障碍可能进一步导致心血管疾病的发生和发展。通过调节损伤后的细胞反应,可以创造局部环境,促进伤口愈合和组织修复机制。细胞外基质为这些机械敏感细胞类型提供跨越微观和纳米尺度的物理线索,以影响细胞的行为,如黏附、形态和表型。因此,利用这些细胞-基底相互作用来引发更自然的细胞行为,以阻止心血管疾病的进展并增强再生潜力,正变得越来越重要。这篇综述讨论了最近的体外和临床前研究工作,这些工作表明微纳尺度生物物理线索对心血管疾病中受影响的细胞类型(心肌细胞、巨噬细胞、成纤维细胞、内皮细胞和血管平滑肌细胞)具有治疗意义。