Suppr超能文献

脊髓 Shox2 中间神经元的相互连接与功能和发育有关。

Spinal Shox2 interneuron interconnectivity related to function and development.

机构信息

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States.

出版信息

Elife. 2018 Dec 31;7:e42519. doi: 10.7554/eLife.42519.

Abstract

Neuronal networks generating hindlimb locomotion are located in the spinal cord. The mechanisms underlying spinal rhythmogenesis are unknown but network activity and interconnectivity of excitatory interneurons likely play prominent roles. Here, we investigate interconnectivity within the Shox2 interneuron population, a subset of which has been suggested to be involved in locomotor rhythm generation, using paired recordings in isolated spinal cords or slices from transgenic mice. Sparse unidirectional connections consistent with chemical synaptic transmission and prominent bidirectional connections mediated by electrical synapses were present within distinct subsets of Shox2 interneurons. Moreover, bidirectional electrical connections were preferentially found between functionally-related Shox2 interneurons. Though prevalent in neonatal mice, electrical coupling began to decline in incidence and strength in mice ~ 3 weeks of age. Overall, our data suggest that gap junctional coupling promotes synchronization of Shox2 interneurons, and may be implicated in locomotor rhythmicity in developing mice.

摘要

产生后肢运动的神经网络位于脊髓中。虽然脊髓节律产生的机制尚不清楚,但网络活动和兴奋性中间神经元的互联性可能起着重要作用。在这里,我们使用分离的脊髓或转基因小鼠切片中的成对记录来研究 Shox2 中间神经元群体内的互联性,其中一部分中间神经元被认为参与运动节律的产生。在 Shox2 中间神经元的不同亚群中存在稀疏的单向连接,这与化学突触传递一致,并且存在明显的双向连接,由电突触介导。此外,双向电连接优先存在于功能相关的 Shox2 中间神经元之间。尽管在新生小鼠中普遍存在,但电耦合并发率和强度在 3 周龄左右的小鼠中开始下降。总的来说,我们的数据表明缝隙连接耦合并促进 Shox2 中间神经元的同步,并且可能与发育中小鼠的运动节律性有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b5/6333440/d48d4b45cb22/elife-42519-fig1.jpg

相似文献

1
Spinal Shox2 interneuron interconnectivity related to function and development.
Elife. 2018 Dec 31;7:e42519. doi: 10.7554/eLife.42519.
2
Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
Neuron. 2013 Nov 20;80(4):920-33. doi: 10.1016/j.neuron.2013.08.015.
4
Neural Interactions in Developing Rhythmogenic Spinal Networks: Insights From Computational Modeling.
Front Neural Circuits. 2020 Dec 23;14:614615. doi: 10.3389/fncir.2020.614615. eCollection 2020.
5
Electrical coupling between locomotor-related excitatory interneurons in the mammalian spinal cord.
J Neurosci. 2006 Aug 16;26(33):8477-83. doi: 10.1523/JNEUROSCI.0395-06.2006.
6
Excitatory Spinal Lhx9-Derived Interneurons Modulate Locomotor Frequency in Mice.
J Neurosci. 2024 May 1;44(18):e1607232024. doi: 10.1523/JNEUROSCI.1607-23.2024.
7
Identification of adult spinal Shox2 neuronal subpopulations based on unbiased computational clustering of electrophysiological properties.
Front Neural Circuits. 2022 Aug 4;16:957084. doi: 10.3389/fncir.2022.957084. eCollection 2022.
8
Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse Hb9 interneurons.
J Neurophysiol. 2007 Oct;98(4):2370-81. doi: 10.1152/jn.00338.2007. Epub 2007 Aug 22.
10
Flexor and Extensor Ankle Afferents Broadly Innervate Locomotor Spinal Shox2 Neurons and Induce Similar Effects in Neonatal Mice.
Front Cell Neurosci. 2019 Oct 9;13:452. doi: 10.3389/fncel.2019.00452. eCollection 2019.

引用本文的文献

2
Central Pattern Generators in Spinal Cord Injury: Mechanisms, Modulation, and Therapeutic Strategies for Motor Recovery.
JOR Spine. 2025 Aug 11;8(3):e70100. doi: 10.1002/jsp2.70100. eCollection 2025 Sep.
3
Now and then: Development of spinal Shox2 neurons.
J Physiol. 2025 Aug;603(16):4443-4444. doi: 10.1113/JP289015. Epub 2025 Jul 26.
4
Cellular mechanisms of synchronized rhythmic burst generation in the ventromedial hypothalamus.
Pflugers Arch. 2025 Jan;477(1):131-145. doi: 10.1007/s00424-024-03031-x. Epub 2024 Oct 14.
5
IGF2BP2-Shox2 axis regulates hippocampal-neuronal senescence to alleviate microgravity-induced recognition disturbance.
iScience. 2024 May 7;27(6):109917. doi: 10.1016/j.isci.2024.109917. eCollection 2024 Jun 21.
6
Excitatory Spinal Lhx9-Derived Interneurons Modulate Locomotor Frequency in Mice.
J Neurosci. 2024 May 1;44(18):e1607232024. doi: 10.1523/JNEUROSCI.1607-23.2024.
7
Distinguishing subtypes of spinal locomotor neurons to inform circuit function and dysfunction.
Curr Opin Neurobiol. 2023 Oct;82:102763. doi: 10.1016/j.conb.2023.102763. Epub 2023 Aug 21.
8
Spinal Basis of Direction Control during Locomotion in Larval Zebrafish.
J Neurosci. 2023 May 31;43(22):4062-4074. doi: 10.1523/JNEUROSCI.0703-22.2023. Epub 2023 May 1.
9
Spinal Interneurons: Diversity and Connectivity in Motor Control.
Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.
10
Modular organization of locomotor networks in people with severe spinal cord injury.
Front Neurosci. 2022 Dec 7;16:1041015. doi: 10.3389/fnins.2022.1041015. eCollection 2022.

本文引用的文献

1
Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits.
Cell Rep. 2018 Oct 2;25(1):146-156.e3. doi: 10.1016/j.celrep.2018.08.095.
2
Breathing matters.
Nat Rev Neurosci. 2018 Jun;19(6):351-367. doi: 10.1038/s41583-018-0003-6.
3
Organization of the core respiratory network: Insights from optogenetic and modeling studies.
PLoS Comput Biol. 2018 Apr 26;14(4):e1006148. doi: 10.1371/journal.pcbi.1006148. eCollection 2018 Apr.
4
Graded Arrays of Spinal and Supraspinal V2a Interneuron Subtypes Underlie Forelimb and Hindlimb Motor Control.
Neuron. 2018 Feb 21;97(4):869-884.e5. doi: 10.1016/j.neuron.2018.01.023. Epub 2018 Feb 1.
5
Diversity of molecularly defined spinal interneurons engaged in mammalian locomotor pattern generation.
J Neurophysiol. 2017 Dec 1;118(6):2956-2974. doi: 10.1152/jn.00322.2017. Epub 2017 Aug 30.
8
Complicating connectomes: Electrical coupling creates parallel pathways and degenerate circuit mechanisms.
Dev Neurobiol. 2017 May;77(5):597-609. doi: 10.1002/dneu.22410. Epub 2016 Aug 8.
9
Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
J Physiol. 2016 Nov 1;594(21):6117-6131. doi: 10.1113/JP272437. Epub 2016 Jul 21.
10
Decoding the organization of spinal circuits that control locomotion.
Nat Rev Neurosci. 2016 Apr;17(4):224-38. doi: 10.1038/nrn.2016.9. Epub 2016 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验