BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):9134-9142. doi: 10.1021/acsami.0c18485. Epub 2021 Feb 12.
Aromatic molecules such as pyrenes are a unique class of building units for graphene functionalization, forming highly ordered π-π stacks while peptides provide more complex, biocompatible linkers. Understanding the adsorption and stacking behavior of these molecules and their influence on material properties is an essential step in enabling highly repeatable 2D material-based applications, such as biosensors, gas sensors, and solar cells. In this work, we characterize pyrene and peptide self-assembly on graphene substrates using fluorescence microscopy, atomic force microscopy and electrolyte-gated field-effect measurements supported by quantum mechanical calculations. We find distinct binding and assembly modes for pyrenes peptides with corresponding distinct electronic signatures in their characteristic charge neutrality point and field-effect slope responses. Our data demonstrates that pyrene- and peptide-based self-assembly platforms can be highly beneficial for precisely customizing graphene electronic properties for desired device technologies such as transport-based biosensing graphene field-effect transistors.
芳香族分子,如并五苯,是石墨烯功能化的独特构建单元,形成高度有序的π-π堆积,而肽则提供更复杂、生物相容的连接体。了解这些分子的吸附和堆积行为及其对材料性能的影响,是实现高度可重复的基于二维材料的应用的关键步骤,如生物传感器、气体传感器和太阳能电池。在这项工作中,我们使用荧光显微镜、原子力显微镜和电解质门控场效应测量,并结合量子力学计算,来表征并五苯和肽在石墨烯衬底上的自组装。我们发现并五苯和肽具有不同的结合和组装模式,相应地在其特征的电荷中性点和场效应斜率响应中具有不同的电子特征。我们的数据表明,基于并五苯和肽的自组装平台对于精确定制石墨烯的电子性质非常有益,例如基于传输的生物传感石墨烯场效应晶体管等所需的器件技术。