Suppr超能文献

腺嘌呤核糖开关结构动力学的热适应和调控功能。

Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch.

机构信息

State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

National Facility for Protein Science (Shanghai), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China.

出版信息

RNA Biol. 2021 Nov;18(11):2007-2015. doi: 10.1080/15476286.2021.1886755. Epub 2021 Feb 25.

Abstract

Ligand binding and temperature play important roles in riboswitch RNAs' structures and functions. However, most studies focused on studying structural dynamics or gene-regulation function of riboswitches from the aspect of ligand, instead of temperature. Here we combined NMR, ITC, stopped-flow and assays to investigate the ligand-triggered switch of adenine riboswitch from 10 to 45°C. Our results demonstrated that at single-nucleotide resolution, structural regions sensed ligand and temperature diversely. Temperature had opposite effects on ligand-binding and gene-regulation of adenine riboswitch. Compared with higher temperature, the RNA bound with its cognate ligand obviously stronger, while its regulatory capacity was weakened at lower temperature. In addition, application of specific-labelled RNAs to the stopped-flow experiments identified the real-time folding of the specific positions upon ligand addition at different temperatures. The kissing loop and internal loop at the riboswitch responded to ligand and temperature differently. The distinct thermo-dynamics of adenine riboswitch exposed here may contribute to the fields of RNA sensors and drug design.

摘要

配体结合和温度在核糖开关 RNA 的结构和功能中起着重要作用。然而,大多数研究都从配体的角度研究核糖开关的结构动力学或基因调控功能,而不是温度。在这里,我们结合 NMR、ITC、停流和荧光各向异性实验,在 10 到 45°C 的温度范围内研究了腺嘌呤核糖开关的配体触发开关。我们的结果表明,在单核苷酸分辨率下,结构区域以不同的方式感知配体和温度。温度对腺嘌呤核糖开关的配体结合和基因调控有相反的影响。与较高温度相比,RNA 与其同源配体的结合明显更强,而在较低温度下其调节能力减弱。此外,将特定标记的 RNA 应用于停流实验,在不同温度下,在配体加入时,能够识别特定位置的实时折叠。核糖开关的发夹环和内环对配体和温度的反应不同。这里揭示的腺嘌呤核糖开关的独特热力学性质可能有助于 RNA 传感器和药物设计领域。

相似文献

1
Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch.
RNA Biol. 2021 Nov;18(11):2007-2015. doi: 10.1080/15476286.2021.1886755. Epub 2021 Feb 25.
2
A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition.
Nucleic Acids Res. 2021 Jun 4;49(10):5891-5904. doi: 10.1093/nar/gkab307.
3
Refolding through a Linear Transition State Enables Fast Temperature Adaptation of a Translational Riboswitch.
Biochemistry. 2020 Mar 17;59(10):1081-1086. doi: 10.1021/acs.biochem.9b01044. Epub 2020 Mar 9.
4
Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
RNA. 2013 Nov;19(11):1517-24. doi: 10.1261/rna.040493.113. Epub 2013 Sep 19.
5
Using reweighted pulling simulations to characterize conformational changes in riboswitches.
Methods Enzymol. 2015;553:139-62. doi: 10.1016/bs.mie.2014.10.055. Epub 2015 Feb 3.
6
Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
Phys Rev E. 2019 Aug;100(2-1):022412. doi: 10.1103/PhysRevE.100.022412.
7
Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
J Mol Biol. 2006 Jun 9;359(3):754-68. doi: 10.1016/j.jmb.2006.04.003. Epub 2006 Apr 21.
9
Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch.
J Mol Biol. 2010 Mar 12;396(5):1422-38. doi: 10.1016/j.jmb.2009.12.024. Epub 2009 Dec 21.
10
Computational study of unfolding and regulation mechanism of preQ1 riboswitches.
PLoS One. 2012;7(9):e45239. doi: 10.1371/journal.pone.0045239. Epub 2012 Sep 17.

引用本文的文献

1
Sugar-sensing swodkoreceptors and swodkocrine signaling.
Animal Model Exp Med. 2025 May;8(5):944-961. doi: 10.1002/ame2.70007. Epub 2025 Mar 20.
2
SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation.
Biomolecules. 2024 Jun 23;14(7):742. doi: 10.3390/biom14070742.
3
Temperature-sensing riboceptors.
RNA Biol. 2024 Jan;21(1):1-6. doi: 10.1080/15476286.2024.2379118. Epub 2024 Jul 17.
4
Elimination of editing plasmid mediated by theophylline riboswitch in Zymomonas mobilis.
Appl Microbiol Biotechnol. 2023 Dec;107(23):7151-7163. doi: 10.1007/s00253-023-12783-y. Epub 2023 Sep 20.
5
Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
Microbiol Spectr. 2023 Feb 14;11(1):e0275222. doi: 10.1128/spectrum.02752-22. Epub 2023 Jan 23.

本文引用的文献

1
Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes.
Chem Soc Rev. 2020 Oct 21;49(20):7331-7353. doi: 10.1039/d0cs00617c. Epub 2020 Sep 18.
2
Imaginary Ribozymes.
ACS Chem Biol. 2020 Aug 21;15(8):2020-2030. doi: 10.1021/acschembio.0c00214. Epub 2020 Aug 3.
3
Refolding through a Linear Transition State Enables Fast Temperature Adaptation of a Translational Riboswitch.
Biochemistry. 2020 Mar 17;59(10):1081-1086. doi: 10.1021/acs.biochem.9b01044. Epub 2020 Mar 9.
5
Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA.
Nat Protoc. 2018 May;13(5):987-1005. doi: 10.1038/nprot.2018.002. Epub 2018 Apr 12.
7
Real-time crystallographic studies of the adenine riboswitch using an X-ray free-electron laser.
FEBS J. 2017 Oct;284(20):3374-3380. doi: 10.1111/febs.14110. Epub 2017 Aug 1.
8
Long-Range Interactions in Riboswitch Control of Gene Expression.
Annu Rev Biophys. 2017 May 22;46:455-481. doi: 10.1146/annurev-biophys-070816-034042. Epub 2017 Mar 30.
10
Single-molecule analysis reveals multi-state folding of a guanine riboswitch.
Nat Chem Biol. 2017 Feb;13(2):194-201. doi: 10.1038/nchembio.2252. Epub 2016 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验