Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, EL Paso, Texas, United States.
Biomedical Sciences Graduate School, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, Texas79905-2827, United States.
Curr Gene Ther. 2021;21(4):349-360. doi: 10.2174/1566523221666210211101740.
Successful delivery of gene-editing tools using nano-carriers is dependent on the ability of nanoparticles to pass through the cellular membrane, move through the cytoplasm, and cross the nuclear envelope to enter the nucleus. It is critical that intracellular nanoparticles interact with the cytoskeletal network to move toward the nucleus, and must escape degradation pathways including lysosomal digestion. Without efficient intracellular transportation and nuclear entry, nanoparticles-based gene-editing cannot be effectively used for targeted genomic modification.
We have developed nanoparticles with a low molecular weight branched polyethylenimine lipid shell and a PLGA core that can effectively deliver plasmid DNA to macrophages for gene editing while limiting toxicity.
Core-shell nanoparticles were synthesized by a modified solvent evaporation method and were loaded with plasmid DNA. Confocal microscopy was used to visualize the internalization, intracellular distribution and cytoplasmic transportation of plasmid DNA loaded nanoparticles (pDNA-NPs) in bone marrow-derived macrophages.
Core-shell nanoparticles had a high surface charge of +56 mV and narrow size distribution. When loaded with plasmid DNA for transfection, the nanoparticles increased in size from 150 nm to 200 nm, and the zeta potential decreased to +36 mV, indicating successful encapsulation. Further, fluorescence microscopy revealed that pDNA-NPs crossed the cell membrane and interacted with actin filaments. Intracellular tracking of pDNA-NPs showed successful separation of pDNA- NPs from lysosomes, allowing entry into the nucleus at 2 hours, with further nuclear ingress up to 5 hours. Bone marrow-derived macrophages treated with pDNA/GFP-NPs exhibited high GFP expression with low cytotoxicity.
Together, this data suggests pDNA-NPs are an effective delivery system for macrophage gene-editing.
使用纳米载体成功传递基因编辑工具取决于纳米颗粒穿透细胞膜、穿过细胞质并穿过核膜进入细胞核的能力。至关重要的是,细胞内纳米颗粒必须与细胞骨架网络相互作用,向核移动,并必须逃避包括溶酶体消化在内的降解途径。如果没有有效的细胞内运输和核进入,基于纳米颗粒的基因编辑就不能有效地用于靶向基因组修饰。
我们开发了一种具有低分子量支化聚乙烯亚胺脂质壳和 PLGA 核的纳米颗粒,可有效将质粒 DNA 递送至巨噬细胞进行基因编辑,同时限制毒性。
通过改良的溶剂蒸发法合成核壳纳米颗粒,并负载质粒 DNA。共聚焦显微镜用于可视化骨髓来源的巨噬细胞中负载质粒 DNA 的纳米颗粒(pDNA-NPs)的内化、细胞内分布和细胞质运输。
核壳纳米颗粒具有 56 mV 的高表面电荷和窄的粒径分布。当负载质粒 DNA 进行转染时,纳米颗粒的粒径从 150nm 增加到 200nm,zeta 电位降低至+36mV,表明成功包封。此外,荧光显微镜显示 pDNA-NPs 穿过细胞膜并与肌动蛋白丝相互作用。pDNA-NPs 的细胞内追踪显示,pDNA-NPs 与溶酶体成功分离,允许在 2 小时进入细胞核,并在 5 小时内进一步进入细胞核。用 pDNA/GFP-NPs 处理的骨髓来源的巨噬细胞表现出高 GFP 表达和低细胞毒性。
总之,这些数据表明 pDNA-NPs 是巨噬细胞基因编辑的有效递药系统。