Suppr超能文献

不同孔隙率的立体光固化增材制造氧化锆的制造精度和体积变化。

Manufacturing accuracy and volumetric changes of stereolithography additively manufactured zirconia with different porosities.

机构信息

Assistant Professor and Assistant Program Director, AEGD Residency, Comprehensive Dentistry Department, College of Dentistry, Texas A&M University, Dallas, Texas; Affiliate Faculty, Graduate Prosthodontics, Restorative Dentistry Department, School of Dentistry, University of Washington, Seattle, Wash; Researcher at Revilla Research Center, Madrid, Spain.

Student, AEGD Residency, Comprehensive Dentistry Department, College of Dentistry, Texas A&M University, Dallas, Texas.

出版信息

J Prosthet Dent. 2022 Aug;128(2):211-215. doi: 10.1016/j.prosdent.2020.06.021. Epub 2021 Feb 8.

Abstract

STATEMENT OF PROBLEM

When compared with subtractive fabricating methods, additive manufacturing (AM) technologies are capable of fabricating complex geometries with different material porosities. However, the manufacturing accuracy and shrinkage of the stereolithography (SLA) AM zirconia with different porosities are unclear.

PURPOSE

The purpose of this in vitro study was to measure the manufacturing accuracy and volumetric changes of AM zirconia specimens with porosities of 0%, 20%, and 40%.

MATERIAL AND METHODS

A digital design of a bar (25×4×3 mm) was obtained by using an open-source software program (Blender, version 2.77a; The Blender Foundation). The standard tessellation language (STL) file was exported. Three groups were created based on the material porosity: 0% porosity (0% group), 20% porosity (20% group), and 40% porosity (40% group). The STL was used to manufacture all the specimens by using an SLA ceramic printer (CeraMaker 900; 3DCeram Co) and zirconia material (3DMix ZrO paste; 3DCeram Co) (n=20). After manufacturing, the specimens were cleaned of the green parts by using a semiautomated cleaning station. Subsequently, debinding procedures was completed in a furnace at 600 °C. The sintering procedures varied among the groups to achieve different porosities. For the 0% group, the ZrO was sintered in a furnace at 1450 °C, and for the 20% and 40% groups, the sintering temperature varied between 1450 °C and 1225 °C. The specimen dimensions (length, width, and height) were measured 3 times with digital calipers, and the mean value was determined. The manufacturing volume shrinkage (%) was calculated by using the digital design of the bar and the achieved AM dimensions of the specimens. The Shapiro-Wilk test revealed that the data were not normally distributed. Therefore, the data were analyzed by using the Kruskal-Wallis followed by pairwise Mann-Whitney U tests (α=.05).

RESULTS

The Kruskal-Wallis test demonstrated significant differences among the groups in length, width, and height (P<.001). The Mann-Whitney U test indicated significant differences in pairwise comparisons of length, width, and height among the 3 groups (P<.001). The 0% group obtained a median ±interquartile range values of 20.92 ±0.14 mm in length, 3.43 ±0.07 mm in width, and 2.39 ±0.03 mm in height; the 20% group obtained 22.81 ±0.29 mm in length, 3.74 ±0.07 mm in width, and 2.62 ±0.05 mm in height; and the 40% group presented 25.11 ±0.13 mm in length, 4.14 ±0.08 mm in width, and 2.96 ±0.02 mm in height. Significant differences in manufacturing volumetric changes were encountered among the 3 groups (P<.001). In all groups, volumetric changes in the length, width, and height were not uniform, being higher in the z-axis direction compared with the x- and y-axis. The manufacturing volumetric changes varied from -20.33 ±1.00% to +3.5 ±2.00%.

CONCLUSIONS

The 40%-porosity group obtained the highest manufacturing accuracy and the lowest manufacturing volume change, followed by the 20%-porosity and the 0%-porosity groups. An uneven manufacturing volume change in the x-, y-, and z-axis was observed. However, none of the groups tested were able to perfectly match the virtual design of the specimens.

摘要

问题陈述

与减法制造方法相比,增材制造(AM)技术能够制造具有不同材料孔隙率的复杂几何形状。然而,不同孔隙率的立体光固化(SLA)AM 氧化锆的制造精度和收缩率尚不清楚。

目的

本体外研究的目的是测量孔隙率为 0%、20%和 40%的 AM 氧化锆试件的制造精度和体积变化。

材料和方法

使用开源软件程序(Blender,版本 2.77a;Blender 基金会)获得条形物的数字设计(25×4×3mm)。导出标准曲面细分语言(STL)文件。根据材料孔隙率创建了三组:0%孔隙率(0%组)、20%孔隙率(20%组)和 40%孔隙率(40%组)。使用 SLA 陶瓷打印机(CeraMaker 900;3DCeram Co)和氧化锆材料(3DMix ZrO 糊剂;3DCeram Co)(n=20)使用 STL 制造所有试件。制造后,使用半自动清洗站将绿色部件清洗干净。随后,在 600°C 的炉中完成脱粘程序。烧结程序因各组而异,以达到不同的孔隙率。对于 0%组,ZrO 在炉中于 1450°C 烧结,而对于 20%和 40%组,烧结温度在 1450°C 和 1225°C 之间变化。使用数字卡尺测量试件的长度、宽度和高度 3 次,并确定平均值。通过使用条形物的数字设计和获得的 AM 试件尺寸计算制造体积收缩率(%)。Shapiro-Wilk 检验表明数据未呈正态分布。因此,使用 Kruskal-Wallis 检验 followed by pairwise Mann-Whitney U tests(α=.05)分析数据。

结果

Kruskal-Wallis 检验表明各组在长度、宽度和高度方面存在显著差异(P<.001)。Mann-Whitney U 检验表明 3 组之间的长度、宽度和高度的两两比较存在显著差异(P<.001)。0%组获得的中位数±四分位距值为长度 20.92±0.14mm、宽度 3.43±0.07mm 和高度 2.39±0.03mm;20%组获得的长度为 22.81±0.29mm、宽度为 3.74±0.07mm 和高度为 2.62±0.05mm;40%组呈现的长度为 25.11±0.13mm、宽度为 4.14±0.08mm 和高度为 2.96±0.02mm。三组之间的制造体积变化存在显著差异(P<.001)。在所有组中,长度、宽度和高度的体积变化不均匀,在 z 轴方向上的变化高于 x 轴和 y 轴。制造体积变化范围为-20.33±1.00%至+3.5±2.00%。

结论

40%孔隙率组获得了最高的制造精度和最低的制造体积变化,其次是 20%孔隙率组和 0%孔隙率组。在 x、y 和 z 轴观察到不均匀的制造体积变化。然而,没有一个测试组能够完全匹配试件的虚拟设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验