College of Dentistry, Texas A&M University, Dallas, TX.
College of Engineering, Texas A&M University, College Station, TX.
J Prosthodont. 2022 Jun;31(5):434-440. doi: 10.1111/jopr.13430. Epub 2021 Oct 13.
Additive manufacturing (AM) technologies are capable of fabricating complex geometries with different porosities. However, the effect of such porosities on mechanical properties of stereolithography (SLA) AM zirconia with different porosities is unclear. The purpose of this in vitro study was to investigate the mechanical properties namely flexural strength, and flexural modulus of AM zirconia with different porosities.
A bar (25 × 4 × 3 mm) for flexural strength test (ISO standard 6872/2015) was designed by CAD software program and standard tessellation language (STL) file was obtained. The STL file was used to fabricate a total of 80 bars in four groups. Three experimental groups each containing 20 samples were manufactured using an SLA ceramic printer (CeraMaker 900; 3DCeram Co) and zirconia material (3DMix ZrO paste; 3DCeram Co) with different sintering post processing to achieve different porosities including 0%-porosity (AMZ0), 20%-porosity (AMZ20), and 40%-porosity (AMZ40). The same STL file was used for subtractive manufacturing or milling of 20 zirconia bars as control group (CNCZ) with the same dimensions using a commercial zirconia. Three-point bending tests were performed for all groups following ISO standard 6872/2015 specification using a universal testing machine. Outcomes measured included load at fracture, mean flexural strength, and flexural modulus and they were compared across the experimental groups using a one-way ANOVA. Post hoc pair wise comparison between each pair of the groups were performed using Tukey test.
There was a significant difference between the four groups, in terms of fracture load, flexural strength and flexural modulus using one-way ANOVA. AM zirconia with 0% porosity (AMZ0) showed the highest value for fracture load (1132.7 ± 220.6 N), flexural strength (755.1 ± 147.1 MPa) and flexural modulus (41,273 ± 2193 MPa) and AM zirconia with 40% porosity (AMZ40) showed the lowest fracture load (72.13 ± 13.42 N), flexural strength (48.09 ± 8.95 MPa) and flexural modulus (7177 ± 506 MPa). Tukey's pairwise comparisons detected a significant difference between all the possible pairs for all variables except flexural modulus between AMZ0 and CNCZ. The Weibull moduli presented the lowest value for AMZ20 (4.4) followed by AMZ40 (6.1), AMZ0 (6.1), and the highest value was for CNCZ (8.1).
AM zirconia with 0% porosity showed significantly higher flexural strength and flexural modulus when compared to milled and AM zirconia with 20% and 40% porosities.
增材制造(AM)技术能够制造具有不同孔隙率的复杂几何形状。然而,不同孔隙率对立体光固化(SLA)AM 氧化锆的机械性能的影响尚不清楚。本体外研究的目的是研究不同孔隙率的 AM 氧化锆的机械性能,即弯曲强度和弯曲模量。
通过 CAD 软件程序设计了用于弯曲强度测试(ISO 标准 6872/2015)的棒(25×4×3mm),并获得了标准网格语言(STL)文件。使用 STL 文件在四个组中总共制造了 80 个棒。三个实验组,每个组包含 20 个样本,使用 SLA 陶瓷打印机(CeraMaker 900;3DCeram Co)和氧化锆材料(3DMix ZrO 糊剂;3DCeram Co)制造,采用不同的烧结后处理以实现不同的孔隙率,包括 0%-孔隙率(AMZ0)、20%-孔隙率(AMZ20)和 40%-孔隙率(AMZ40)。使用相同的 STL 文件对 20 个氧化锆棒进行减材制造或铣削,作为对照组(CNCZ),尺寸相同,使用商业氧化锆。按照 ISO 标准 6872/2015 规范,使用万能试验机对所有组进行三点弯曲测试。测量的结果包括断裂时的载荷、平均弯曲强度和弯曲模量,并使用单向方差分析比较实验各组之间的结果。使用 Tukey 检验对每组之间的每对进行事后成对比较。
使用单向方差分析,四个组之间在断裂载荷、弯曲强度和弯曲模量方面存在显著差异。孔隙率为 0%的 AM 氧化锆(AMZ0)显示出最高的断裂载荷(1132.7±220.6N)、弯曲强度(755.1±147.1MPa)和弯曲模量(41273±2193MPa),而孔隙率为 40%的 AM 氧化锆(AMZ40)显示出最低的断裂载荷(72.13±13.42N)、弯曲强度(48.09±8.95MPa)和弯曲模量(7177±506MPa)。Tukey 的成对比较检测到所有变量的所有可能对之间都存在显著差异,除了 AMZ0 和 CNCZ 之间的弯曲模量。Weibull 模数的最低值为 AMZ20(4.4),其次是 AMZ40(6.1)、AMZ0(6.1)和最高值为 CNCZ(8.1)。
与铣削和孔隙率为 20%和 40%的 AM 氧化锆相比,孔隙率为 0%的 AM 氧化锆的弯曲强度和弯曲模量显著更高。