Suppr超能文献

对各向同性三维液体衰减反转恢复磁共振图像上的脑白质高信号进行分割:在挪威成像数据库中评估深度学习工具。

Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database.

机构信息

Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway.

Division of Radiology and Nuclear Medicine, Computational Radiology & Artificial Intelligence (CRAI), Oslo University Hospital, Oslo, Norway.

出版信息

PLoS One. 2023 Aug 24;18(8):e0285683. doi: 10.1371/journal.pone.0285683. eCollection 2023.

Abstract

An important step in the analysis of magnetic resonance imaging (MRI) data for neuroimaging is the automated segmentation of white matter hyperintensities (WMHs). Fluid Attenuated Inversion Recovery (FLAIR-weighted) is an MRI contrast that is particularly useful to visualize and quantify WMHs, a hallmark of cerebral small vessel disease and Alzheimer's disease (AD). In order to achieve high spatial resolution in each of the three voxel dimensions, clinical MRI protocols are evolving to a three-dimensional (3D) FLAIR-weighted acquisition. The current study details the deployment of deep learning tools to enable automated WMH segmentation and characterization from 3D FLAIR-weighted images acquired as part of a national AD imaging initiative. Based on data from the ongoing Norwegian Disease Dementia Initiation (DDI) multicenter study, two 3D models-one off-the-shelf from the NVIDIA nnU-Net framework and the other internally developed-were trained, validated, and tested. A third cutting-edge Deep Bayesian network model (HyperMapp3r) was implemented without any de-novo tuning to serve as a comparison architecture. The 2.5D in-house developed and 3D nnU-Net models were trained and validated in-house across five national collection sites among 441 participants from the DDI study, of whom 194 were men and whose average age was (64.91 +/- 9.32) years. Both an external dataset with 29 cases from a global collaborator and a held-out subset of the internal data from the 441 participants were used to test all three models. These test sets were evaluated independently. The ground truth human-in-the-loop segmentation was compared against five established WMH performance metrics. The 3D nnU-Net had the highest performance out of the three tested networks, outperforming both the internally developed 2.5D model and the SOTA Deep Bayesian network with an average dice similarity coefficient score of 0.76 +/- 0.16. Our findings demonstrate that WMH segmentation models can achieve high performance when trained exclusively on FLAIR input volumes that are 3D volumetric acquisitions. Single image input models are desirable for ease of deployment, as reflected in the current embedded clinical research project. The 3D nnU-Net had the highest performance, which suggests a way forward for our need to automate WMH segmentation while also evaluating performance metrics during on-going data collection and model retraining.

摘要

磁共振成像(MRI)数据分析中的一个重要步骤是自动分割脑白质高信号(WMH)。液体衰减反转恢复(FLAIR)加权是一种 MRI 对比,特别有助于可视化和量化 WMH,这是脑小血管病和阿尔茨海默病(AD)的标志。为了在每个三维体素的三个维度上实现高空间分辨率,临床 MRI 方案正在向三维(3D)FLAIR 加权采集发展。本研究详细介绍了深度学习工具的部署,以实现从作为国家 AD 成像计划一部分获得的 3D FLAIR 加权图像中自动分割和特征描述 WMH。基于正在进行的挪威疾病痴呆症倡议(DDI)多中心研究的数据,训练、验证和测试了两个 3D 模型——一个是来自 NVIDIA nnU-Net 框架的现成模型,另一个是内部开发的模型。实施了第三个前沿的深度贝叶斯网络模型(HyperMapp3r),无需进行任何从头开始的调整,作为比较架构。内部开发的 2.5D 和 3D nnU-Net 模型在五个国家采集站点内进行了训练和验证,其中包括来自 DDI 研究的 441 名参与者,其中 194 名是男性,平均年龄为(64.91 +/- 9.32)岁。使用来自全球合作者的 29 例外部数据集和来自 441 名参与者的内部数据的保留子集来测试所有三个模型。这些测试集是独立评估的。将人机交互分割的真实数据与五个已建立的 WMH 性能指标进行比较。在三个测试网络中,3D nnU-Net 的性能最高,优于内部开发的 2.5D 模型和 SOTA 深度贝叶斯网络,平均骰子相似系数评分为 0.76 +/- 0.16。我们的研究结果表明,WMH 分割模型可以在仅对三维容积采集的 FLAIR 输入体积进行训练时实现高性能。单图像输入模型因其易于部署而受到青睐,这反映在当前的嵌入式临床研究项目中。3D nnU-Net 的性能最高,这为我们在进行中的数据收集和模型重新训练过程中自动分割 WMH 并评估性能指标提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c516/10449185/66463f369011/pone.0285683.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验