Suppr超能文献

基于卷积神经网络的临床脑部磁共振成像 FLAIR 病变分割自动化。

Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging.

机构信息

From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

AJNR Am J Neuroradiol. 2019 Aug;40(8):1282-1290. doi: 10.3174/ajnr.A6138. Epub 2019 Jul 25.

Abstract

BACKGROUND AND PURPOSE

Most brain lesions are characterized by hyperintense signal on FLAIR. We sought to develop an automated deep learning-based method for segmentation of abnormalities on FLAIR and volumetric quantification on clinical brain MRIs across many pathologic entities and scanning parameters. We evaluated the performance of the algorithm compared with manual segmentation and existing automated methods.

MATERIALS AND METHODS

We adapted a U-Net convolutional neural network architecture for brain MRIs using 3D volumes. This network was retrospectively trained on 295 brain MRIs to perform automated FLAIR lesion segmentation. Performance was evaluated on 92 validation cases using Dice scores and voxelwise sensitivity and specificity, compared with radiologists' manual segmentations. The algorithm was also evaluated on measuring total lesion volume.

RESULTS

Our model demonstrated accurate FLAIR lesion segmentation performance (median Dice score, 0.79) on the validation dataset across a large range of lesion characteristics. Across 19 neurologic diseases, performance was significantly higher than existing methods (Dice, 0.56 and 0.41) and approached human performance (Dice, 0.81). There was a strong correlation between the predictions of lesion volume of the algorithm compared with true lesion volume (ρ = 0.99). Lesion segmentations were accurate across a large range of image-acquisition parameters on >30 different MR imaging scanners.

CONCLUSIONS

A 3D convolutional neural network adapted from a U-Net architecture can achieve high automated FLAIR segmentation performance on clinical brain MR imaging across a variety of underlying pathologies and image acquisition parameters. The method provides accurate volumetric lesion data that can be incorporated into assessments of disease burden or into radiologic reports.

摘要

背景与目的

大多数脑部病变在 FLAIR 上表现为高信号。我们旨在开发一种基于深度学习的自动化方法,用于对 FLAIR 上的异常进行分割,并对临床脑部 MRI 进行容积量化,涵盖多种病变实体和扫描参数。我们评估了该算法与手动分割和现有自动化方法相比的性能。

材料与方法

我们使用 3D 体积对 U-Net 卷积神经网络架构进行了脑部 MRI 的适配。该网络通过回顾性地对 295 例脑部 MRI 进行训练,以实现自动 FLAIR 病变分割。使用 Dice 评分和体素级别的敏感性和特异性,在 92 例验证病例上评估了性能,与放射科医生的手动分割进行了比较。该算法还用于测量总病变体积。

结果

我们的模型在验证数据集上展示了在广泛的病变特征范围内具有准确的 FLAIR 病变分割性能(中位数 Dice 评分,0.79)。在 19 种神经疾病中,其性能明显高于现有方法(Dice 评分分别为 0.56 和 0.41),并接近人类表现(Dice 评分 0.81)。与真实病变体积相比,算法对病变体积的预测具有很强的相关性(ρ=0.99)。在 >30 种不同的磁共振成像扫描仪上,该算法在大范围的图像采集参数上的病变分割都是准确的。

结论

一种基于 U-Net 架构的 3D 卷积神经网络可以在各种潜在的病理学和图像采集参数的临床脑部 MRI 上实现高的自动 FLAIR 分割性能。该方法提供了准确的病变体积数据,可以纳入疾病负担评估或纳入放射学报告中。

相似文献

引用本文的文献

9
3D Capsule Networks for Brain Image Segmentation.三维胶囊网络在脑图像分割中的应用。
AJNR Am J Neuroradiol. 2023 May;44(5):562-568. doi: 10.3174/ajnr.A7845. Epub 2023 Apr 20.

本文引用的文献

9
Bias in Radiology: The How and Why of Misses and Misinterpretations.放射学中的偏倚:漏诊和误诊的原因与方式。
Radiographics. 2018 Jan-Feb;38(1):236-247. doi: 10.1148/rg.2018170107. Epub 2017 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验