Li Donghai, Trovatello Chiara, Dal Conte Stefano, Nuß Matthias, Soavi Giancarlo, Wang Gang, Ferrari Andrea C, Cerullo Giulio, Brixner Tobias
Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133, Milano, Italy.
Nat Commun. 2021 Feb 11;12(1):954. doi: 10.1038/s41467-021-20895-0.
Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we use two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe. We detect beating signals as a function of waiting time induced by the coupling between A excitons and A' optical phonons. Analysis of beating maps combined with simulations provides the exciton-phonon coupling. We get a Huang-Rhys factor ~1, larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems, with a spatial resolution ~260 nm, and provides design-relevant parameters for the development of optoelectronic devices.
单层过渡金属二卤化物无论是在基础物理学还是应用方面,都处于日益增加的研究工作的核心。激子 - 声子耦合在决定这些材料的(光)电子性质方面起着关键作用。然而,激子 - 声子耦合强度尚未在室温下测量。在这里,我们使用二维光谱来确定单层MoSe₂的激子 - 声子耦合。我们检测到由A激子与A'光学声子之间的耦合引起的作为等待时间函数的拍频信号。结合模拟对拍频图的分析提供了激子 - 声子耦合。我们得到一个约为1的黄 - 里斯因子,比大多数其他无机半导体纳米结构中的都大。我们的技术提供了一种独特的工具,用于在其他异质半导体系统中测量激子 - 声子耦合,空间分辨率约为260 nm,并为光电器件的开发提供与设计相关的参数。