Suppr超能文献

自旋轨道耦合改变了铈的超开放壳层基态的特性,并且事实证明,CeH的键解离能对理论来说颇具挑战性。

Spin-Orbit Coupling Changes the Identity of the Hyper-Open-Shell Ground State of Ce, and the Bond Dissociation Energy of CeH Proves to Be Challenging for Theory.

作者信息

Ning Jiaxin, Truhlar Donald G

机构信息

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.

出版信息

J Chem Theory Comput. 2021 Mar 9;17(3):1421-1434. doi: 10.1021/acs.jctc.0c01124. Epub 2021 Feb 12.

Abstract

Cerium (Ce) plays important roles in catalysis. Its position in the sixth period of the periodic table leads to spin-orbit coupling (SOC) and other open-shell effects that make the quantum mechanical calculation of cerium compounds challenging. In this work, we investigated the low-lying spin states of Ce and the bond energy of CeH, both by multiconfigurational methods, in particular, SA-CASSCF, MC-PDFT, CASPT2, XMS-PDFT, and XMS-CASPT2, and by single-configurational methods, namely, Hartree-Fock theory and unrestricted Kohn-Sham density functional theory with 34 choices of the exchange-correlation functional. We found that only CASPT2, XMS-CASPT2, and SA-CASSCF (among the five multiconfigurational methods) and GAM, HCTH, SOGGA11, and OreLYP (among the 35 single-configuration methods) successfully predict that the SOC-free ground spin state of Ce is a doublet state, and CASPT2 and GAM give the most accurate multireference and single-reference calculations, respectively, of the excitation energy of the first SOC-free excited state for Ce. We calculated that the ground doublet state of Ce is an intra-atomic hyper-open-shell state. We calculated the spin-orbit energy () of Ce by the five multiconfigurational methods and found that calculated by CASPT2 is the closest to the experimental value. Taking advantage of the availability of an experimental for CeH as a way to provide a unique test of theory, we showed that all the multiconfigurational methods overestimate by at least 246 meV (5.7 kcal/mol), and only three functionals, namely, SOGGA, MN15, and GAM, have an error of that is less than 200 meV (5 kcal/mol).

摘要

铈(Ce)在催化过程中发挥着重要作用。它在元素周期表第六周期的位置导致了自旋轨道耦合(SOC)以及其他开壳层效应,这使得铈化合物的量子力学计算具有挑战性。在这项工作中,我们通过多组态方法,特别是SA - CASSCF、MC - PDFT、CASPT2、XMS - PDFT和XMS - CASPT2,以及单组态方法,即Hartree - Fock理论和具有34种交换相关泛函选择的无限制Kohn - Sham密度泛函理论,研究了Ce的低能自旋态和CeH的键能。我们发现,在五种多组态方法中,只有CASPT2、XMS - CASPT2和SA - CASSCF,以及在35种单组态方法中,只有GAM、HCTH、SOGGA11和OreLYP成功预测了Ce的无SOC基态自旋态是双重态,并且CASPT2和GAM分别给出了Ce的第一个无SOC激发态激发能的最准确的多参考和单参考计算结果。我们计算得出Ce的基态双重态是一种原子内超开壳层态。我们通过五种多组态方法计算了Ce的自旋轨道能量(),发现通过CASPT2计算得到的值最接近实验值。利用CeH的实验值作为对理论进行独特检验的一种方式,我们表明所有多组态方法对的高估至少为246 meV(5.7 kcal/mol),并且只有三种泛函,即SOGGA、MN15和GAM,的误差小于200 meV(5 kcal/mol)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验