Suppr超能文献

小分子晶体格子数据引导的力场优化实现了一致的亚埃级蛋白-配体对接。

Force Field Optimization Guided by Small Molecule Crystal Lattice Data Enables Consistent Sub-Angstrom Protein-Ligand Docking.

机构信息

Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States.

Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Chem Theory Comput. 2021 Mar 9;17(3):2000-2010. doi: 10.1021/acs.jctc.0c01184. Epub 2021 Feb 12.

Abstract

Accurate and rapid calculation of protein-small molecule interaction free energies is critical for computational drug discovery. Because of the large chemical space spanned by drug-like molecules, classical force fields contain thousands of parameters describing atom-pair distance and torsional preferences; each parameter is typically optimized independently on simple representative molecules. Here, we describe a new approach in which small molecule force field parameters are jointly optimized guided by the rich source of information contained within thousands of available small molecule crystal structures. We optimize parameters by requiring that the experimentally determined molecular lattice arrangements have lower energy than all alternative lattice arrangements. Thousands of independent crystal lattice-prediction simulations were run on each of 1386 small molecule crystal structures, and energy function parameters of an implicit solvent energy model were optimized, so native crystal lattice arrangements had the lowest energy. The resulting energy model was implemented in Rosetta, together with a rapid genetic algorithm docking method employing grid-based scoring and receptor flexibility. The success rate of bound structure recapitulation in cross-docking on 1112 complexes was improved by more than 10% over previously published methods, with solutions within <1 Å in over half of the cases. Our results demonstrate that small molecule crystal structures are a rich source of information for guiding molecular force field development, and the improved Rosetta energy function should increase accuracy in a wide range of small molecule structure prediction and design studies.

摘要

准确快速地计算蛋白质-小分子相互作用自由能对于计算药物发现至关重要。由于类药性分子所涵盖的化学空间巨大,经典力场包含数千个描述原子对距离和扭转偏好的参数;每个参数通常都是在简单的代表性分子上独立优化的。在这里,我们描述了一种新方法,即通过从数千个可用小分子晶体结构中包含的丰富信息指导,共同优化小分子力场参数。我们通过要求实验确定的分子晶格排列比所有其他晶格排列具有更低的能量来优化参数。对 1386 个小分子晶体结构中的每一个结构都进行了数千个独立的晶体晶格预测模拟,优化了隐式溶剂能量模型的能量函数参数,以使天然晶体晶格排列具有最低能量。所得能量模型与 Rosetta 一起实现,同时还采用了基于网格的打分和受体灵活性的快速遗传算法对接方法。在 1112 个复合物的对接交叉对接中,结合结构再现的成功率比以前发表的方法提高了 10%以上,超过一半的情况的解决方案在 <1 Å 以内。我们的结果表明,小分子晶体结构是指导分子力场发展的丰富信息来源,改进的 Rosetta 能量函数应该会提高广泛的小分子结构预测和设计研究的准确性。

相似文献

2
Advances in Docking.对接技术的新进展。
Curr Med Chem. 2019;26(42):7555-7580. doi: 10.2174/0929867325666180904115000.

引用本文的文献

本文引用的文献

3
OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules.OPLS3e:扩展适用于类药物小分子的力场覆盖范围。
J Chem Theory Comput. 2019 Mar 12;15(3):1863-1874. doi: 10.1021/acs.jctc.8b01026. Epub 2019 Mar 4.
4
Escaping Atom Types in Force Fields Using Direct Chemical Perception.利用直接化学感知逃避力场中的原子类型。
J Chem Theory Comput. 2018 Nov 13;14(11):6076-6092. doi: 10.1021/acs.jctc.8b00640. Epub 2018 Oct 30.
5
Optimized Lennard-Jones Parameters for Druglike Small Molecules.优化适用于类药性小分子的 Lennard-Jones 参数。
J Chem Theory Comput. 2018 Jun 12;14(6):3121-3131. doi: 10.1021/acs.jctc.8b00172. Epub 2018 May 7.
7
The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.用于大分子建模与设计的罗塞塔全原子能量函数。
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125. Epub 2017 May 12.
9
Overview of the SAMPL5 host-guest challenge: Are we doing better?SAMPL5主客体挑战概述:我们是否取得了进步?
J Comput Aided Mol Des. 2017 Jan;31(1):1-19. doi: 10.1007/s10822-016-9974-4. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验