Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany.
Neurobiol Dis. 2021 May;152:105289. doi: 10.1016/j.nbd.2021.105289. Epub 2021 Feb 10.
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
在脊髓小脑性共济失调 2 型(SCA2)中,大的多聚谷氨酰胺扩展导致多系统神经萎缩。中等大小的扩展会导致选择性运动神经元变性,即肌萎缩侧索硬化症(ALS)。相反,ATXN2 的耗竭可防止 ALS 疾病进展。尽管 ATXN2 与 RNA 直接相互作用,并且在 ALS 发病机制中 RNA 毒性起着至关重要的作用,但受影响的功能途径仍未明确界定。在这里,我们研究了具有 Atxn2-CAG100-KnockIn 的真实 SCA2 小鼠模型,以首次定义脊髓病理学中的分子机制。下肢神经生理学检测到感觉神经病而不是运动神经失神经支配。三重免疫荧光显示细胞质 ATXN2 聚集体将 TDP43 和 TIA1 从核内隔离出来。在免疫印迹中,这伴随着 CASP3、RIPK1 和 PQBP1 丰度的升高。RT-qPCR 显示 Grn、Tlr7 和 Rnaset2 mRNA 增加,而 Eif5a2、Dcp2、Uhmk1 和 Kif5a 减少。这些 SCA2 发现与已知的 ALS 特征非常吻合。与其他共济失调和肌张力障碍一样,Unc80、Tacr1、Gnal、Ano3、Kcna2、Elovl5 和 Cdr1 的 mRNA 水平降低与 Gpnmb 增加形成对比。终末期组织显示含有 ATXN2 聚集体的强烈激活的小胶质细胞,同时伴有星形胶质细胞增生。从出现运动缺陷的早期阶段与终末期年龄的组织进行全转录组谱分析,确定了具有进行性下调的分子,其中包括胆固醇生物合成酶的簇,包括 Dhcr24、Msmo1、Idi1 和 Hmgcs1。气相色谱法显示关键胆固醇前体代谢物大量损失。总的来说,ATXN2 蛋白聚集过程会影响多种亚细胞区室,特别是应激颗粒、内质网和受体酪氨酸激酶信号。这些发现为神经保护治疗确定了新的靶点和潜在的生物标志物。