San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 5500 Campanile Dr., San Diego 92182, CA, United States.
Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego 92182, CA, United States.
Neuroimage. 2021 May 1;231:117837. doi: 10.1016/j.neuroimage.2021.117837. Epub 2021 Feb 9.
Inhibitory control relies on attention, inhibition, and other functions that are integrated across neural networks in an interactive manner. Functional MRI studies have provided excellent spatial mapping of the involved regions. However, finer temporal resolution is needed to capture the underlying neural dynamics and the pattern of their functional contributions. Here, we used anatomically-constrained magnetoencephalography (aMEG) which combines MEG with structural MRI to examine how the spatial ("where") and temporal ("when") processing stages and interregional co-oscillations unfold in real time to contribute to inhibitory control. Healthy participants completed a modified Go/NoGo paradigm in which a subset of stimuli was modified to be visually salient (SAL). Compared to the non-modified condition, the SAL manipulation facilitated response withholding on NoGo trials and hindered responding to Go stimuli, reflecting attentional capture effectuated by an orienting response to SAL stimuli. aMEG source estimates indicate SAL stimuli elicited the attentional "circuit breaker" effect through early activity within a right-lateralized network centered around the lateral temporal cortex with additional activity in the pre-supplementary motor area (preSMA) and anterior insula (aINS/FO). Activity of the bilateral inferior frontal cortex responded specifically to inhibitory demands and was generally unaffected by the attentional manipulation. In contrast, early aINS/FO activity was sensitive to stimulus salience while subsequent activity was specific to inhibitory control. Activity estimated to the medial prefrontal cortex including the dorsal anterior cingulate cortex and preSMA reflected an integrative role that was sensitive to both inhibitory and attentional stimulus properties. At the level of neurofunctional networks, neural synchrony in the theta band (4-7 Hz) revealed interactions between principal cortical regions subserving attentional and inhibitory processes. Together, these results underscore the dynamic, integrative processing stages underlying inhibitory control.
抑制控制依赖于注意力、抑制等功能,这些功能在神经网络中以交互的方式整合在一起。功能磁共振成像研究为涉及的区域提供了出色的空间映射。然而,需要更精细的时间分辨率来捕捉潜在的神经动力学及其功能贡献的模式。在这里,我们使用了受解剖结构限制的脑磁图(aMEG),它将 MEG 与结构磁共振成像相结合,以检查空间(“何处”)和时间(“何时”)处理阶段以及区域间的协同振荡如何实时展开,以促进抑制控制。健康参与者完成了一项修改后的 Go/NoGo 范式,其中一部分刺激被修改为视觉突出(SAL)。与非修改条件相比,SAL 操作促进了 NoGo 试验中的反应抑制,并阻碍了对 Go 刺激的反应,反映了对 SAL 刺激的定向反应引起的注意力捕获效应。aMEG 源估计表明,SAL 刺激通过位于外侧颞叶皮层周围的右侧化网络中的早期活动引发了注意力“断路器”效应,并且在补充运动前区(preSMA)和前岛叶(aINS/FO)中还有额外的活动。双侧额下回的活动专门对抑制需求做出反应,通常不受注意力操作的影响。相比之下,早期的 aINS/FO 活动对刺激的显着性敏感,而随后的活动则对抑制控制特异性。估计到包括背侧前扣带皮层和 preSMA 的内侧前额叶皮层的活动反映了对抑制和注意力刺激特性都敏感的整合作用。在神经功能网络层面上,θ 波段(4-7 Hz)的神经同步揭示了注意力和抑制过程的主要皮质区域之间的相互作用。总之,这些结果强调了抑制控制的动态、整合处理阶段。