Suppr超能文献

用于检测肥胖驱动的子宫内膜癌的代谢组学生物标志物

Metabolomic Biomarkers for the Detection of Obesity-Driven Endometrial Cancer.

作者信息

Njoku Kelechi, Campbell Amy E, Geary Bethany, MacKintosh Michelle L, Derbyshire Abigail E, Kitson Sarah J, Sivalingam Vanitha N, Pierce Andrew, Whetton Anthony D, Crosbie Emma J

机构信息

Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK.

Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.

出版信息

Cancers (Basel). 2021 Feb 10;13(4):718. doi: 10.3390/cancers13040718.

Abstract

Endometrial cancer is the most common malignancy of the female genital tract and a major cause of morbidity and mortality in women. Early detection is key to ensuring good outcomes but a lack of minimally invasive screening tools is a significant barrier. Most endometrial cancers are obesity-driven and develop in the context of severe metabolomic dysfunction. Blood-derived metabolites may therefore provide clinically relevant biomarkers for endometrial cancer detection. In this study, we analysed plasma samples of women with body mass index (BMI) ≥30kg/m and endometrioid endometrial cancer (cases, = 67) or histologically normal endometrium (controls, = 69), using a mass spectrometry-based metabolomics approach. Eighty percent of the samples were randomly selected to serve as a training set and the remaining 20% were used to qualify test performance. Robust predictive models (AUC > 0.9) for endometrial cancer detection based on artificial intelligence algorithms were developed and validated. Phospholipids were of significance as biomarkers of endometrial cancer, with sphingolipids (sphingomyelins) discriminatory in post-menopausal women. An algorithm combining the top ten performing metabolites showed 92.6% prediction accuracy (AUC of 0.95) for endometrial cancer detection. These results suggest that a simple blood test could enable the early detection of endometrial cancer and provide the basis for a minimally invasive screening tool for women with a BMI ≥ 30 kg/m.

摘要

子宫内膜癌是女性生殖道最常见的恶性肿瘤,也是女性发病和死亡的主要原因。早期检测是确保良好预后的关键,但缺乏微创筛查工具是一个重大障碍。大多数子宫内膜癌由肥胖驱动,在严重的代谢组功能障碍背景下发生。因此,血液衍生的代谢物可能为子宫内膜癌检测提供临床相关的生物标志物。在本研究中,我们使用基于质谱的代谢组学方法,分析了体重指数(BMI)≥30kg/m²且患有子宫内膜样子宫内膜癌的女性(病例组,n = 67)或组织学正常子宫内膜的女性(对照组,n = 69)的血浆样本。80%的样本被随机选作训练集,其余20%用于评估测试性能。基于人工智能算法开发并验证了用于子宫内膜癌检测的强大预测模型(AUC>0.9)。磷脂作为子宫内膜癌的生物标志物具有重要意义,鞘脂(鞘磷脂)在绝经后女性中具有鉴别性。结合表现最佳的十种代谢物的算法在子宫内膜癌检测中显示出92.6%的预测准确率(AUC为0.95)。这些结果表明,一项简单的血液检测能够实现子宫内膜癌的早期检测,并为BMI≥30kg/m²的女性提供一种微创筛查工具的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc3/7916512/7417cef456cb/cancers-13-00718-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验