Sultana Ayesha, Rana Sobia
Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
J Physiol Biochem. 2025 May 23. doi: 10.1007/s13105-025-01084-9.
The association between obesity and cancer risk carries substantial public health ramifications as obesity promotes cancer advancement via many cellular and molecular mechanisms. This study utilizes Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and narrative systematic review guidelines to evaluate 221 research articles selected from an initial collection of 1,288 publications sourced from multiple databases. Obesity-driven cancer risk is linked to hormonal imbalances including increased oestrogen levels that heighten the likelihood of breast and endometrial cancers, and insulin resistance that activates the insulin/ Insulin and Insulin-like Growth Factor 1 (IGF-1) pathway promoting colorectal cancer progression. Chronic low-grade inflammation, metabolic dysfunction, and hypoxia in expanding adipose tissue contribute to pancreatic, oesophageal, colorectal, renal, and liver malignancies. Recent research has identified novel mechanisms that drive obesity-induced cancer progression. The adipose tissue secretome, extracellular vesicle-mediated lipid and RNA transfer, ferroptosis resistance, and metabolic reprogramming via Cluster of Differentiation 36 (CD36), Fatty Acid Binding Protein 4 (FABP4), and Carnitine Palmitoyl transferase 1A (CPT1A) create a tumour-permissive microenvironment. Obesity-induced epigenetic memory sustains cancer risk even after weight loss through persistent histone modifications (Histone H3 Lysine 4 Trimethylation (H3K4me3), Histone H3 Lysine 27 Trimethylation (H3K27me3), DNA methylation, and RNA modifications, particularly through the Fat Mass and Obesity-Associated (FTO) gene. Additionally, organ and cell size expansion increase mutation susceptibility. Emerging pathways including the Von Hippel-Lindau (VHL)-Hypoxia-Inducible Factor (HIF) axis, PR Domain Zinc Finger Protein 16 (PRDM16)/Uncoupling Protein 1 (UCP1) inhibition, Signal Transducer and Activator of Transcription 3 (STAT3)-driven FABP4 upregulation, and Yes-Associated Protein (YAP)/Transcriptional Co-Activator with PDZ-Binding Motif (TAZ) signalling, further highlight obesity's role in oncogenesis. Future research should investigate weight-loss drugs' effects on cancer pathways, expand demographic diversity, and develop biomarkers for adiposity. Integrating Mendelian randomization, multi-omics, and artificial intelligence could reveal novel therapeutic targets. A comprehensive prevention strategy combining lifestyle interventions, pharmacological therapies, and biomarker-driven diagnostics is crucial to reducing obesity-related cancer burden and improving patient outcomes.
肥胖与癌症风险之间的关联具有重大的公共卫生影响,因为肥胖通过多种细胞和分子机制促进癌症进展。本研究采用系统评价和Meta分析的首选报告项目(PRISMA)以及叙述性系统评价指南,对从多个数据库来源的1288篇出版物的初始收集中筛选出的221篇研究文章进行评估。肥胖驱动的癌症风险与激素失衡有关,包括雌激素水平升高增加了乳腺癌和子宫内膜癌的发生可能性,以及胰岛素抵抗激活胰岛素/胰岛素和胰岛素样生长因子1(IGF-1)通路促进结直肠癌进展。不断扩张的脂肪组织中的慢性低度炎症、代谢功能障碍和缺氧会导致胰腺癌、食管癌、结直肠癌、肾癌和肝癌。最近的研究发现了驱动肥胖诱导癌症进展的新机制。脂肪组织分泌组、细胞外囊泡介导的脂质和RNA转移、铁死亡抗性以及通过分化簇36(CD36)、脂肪酸结合蛋白4(FABP4)和肉碱棕榈酰转移酶1A(CPT1A)进行的代谢重编程创造了一个有利于肿瘤生长的微环境。肥胖诱导的表观遗传记忆即使在体重减轻后仍通过持续的组蛋白修饰(组蛋白H3赖氨酸4三甲基化(H3K4me3)、组蛋白H3赖氨酸27三甲基化(H3K27me3)、DNA甲基化和RNA修饰,特别是通过脂肪量和肥胖相关(FTO)基因)维持癌症风险。此外,器官和细胞大小的扩大增加了突变易感性。包括冯·希佩尔-林道(VHL)-缺氧诱导因子(HIF)轴、PR结构域锌指蛋白16(PRDM16)/解偶联蛋白1(UCP1)抑制、信号转导和转录激活因子3(STAT3)驱动的FABP4上调以及Yes相关蛋白(YAP)/含PDZ结合基序(TAZ)的转录共激活因子信号传导等新兴通路,进一步凸显了肥胖在肿瘤发生中的作用。未来的研究应调查减肥药物对癌症通路的影响,扩大人群多样性,并开发肥胖的生物标志物。整合孟德尔随机化、多组学和人工智能可能会揭示新的治疗靶点。结合生活方式干预、药物治疗和生物标志物驱动诊断的综合预防策略对于减轻肥胖相关癌症负担和改善患者预后至关重要。