Bolmanis Emils, Uhlendorff Selina, Pein-Hackelbusch Miriam, Galvanauskas Vytautas, Grigs Oskars
Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Riga, Latvia.
K. Tars Lab, Latvian Biomedical Research and Study Centre, Riga, Latvia.
Front Bioeng Biotechnol. 2025 Jul 30;13:1609369. doi: 10.3389/fbioe.2025.1609369. eCollection 2025.
In-line sensors, which are crucial for real-time (bio-) process monitoring, can suffer from anomalies. These signal spikes and shifts compromise process control. Due to the dynamic and non-stationary nature of bioprocess signals, addressing these issues requires specialized preprocessing. However, existing anomaly detection methods often fail for real-time applications.
This study addresses a common yet critical issue: developing a robust and easy-to-implement algorithm for real-time anomaly detection and removal for in-line permittivity sensor measurement. Recombinant cultivations served as a case study. Trivial approaches, such as moving average filtering, do not adequately capture the complexity of the problem. However, our method provides a structured solution through three consecutive steps: 1) Signal preprocessing to reduce noise and eliminate context dependency; 2) Anomaly detection using threshold-based identification; 3) Validation and removal of identified anomalies.
We demonstrate that our approach effectively detects and removes anomalies by compensating signal shift value, while remaining computationally efficient and practical for real-time use. It achieves an F1-score of 0.79 with a static threshold of 1.06 pF/cm and a double rolling aggregate transformer using window sizes = 1 and = 15. This flexible and scalable algorithm has the potential to bridge a crucial gap in process real-time analytics and control.
在线传感器对于实时(生物)过程监测至关重要,但可能会出现异常情况。这些信号尖峰和偏移会影响过程控制。由于生物过程信号具有动态和非平稳的特性,解决这些问题需要专门的预处理。然而,现有的异常检测方法在实时应用中往往失效。
本研究解决了一个常见但关键的问题:开发一种强大且易于实现的算法,用于在线介电常数传感器测量的实时异常检测和去除。以重组培养为例进行研究。诸如移动平均滤波等简单方法无法充分捕捉问题的复杂性。然而,我们的方法通过三个连续步骤提供了一种结构化解决方案:1)信号预处理以降低噪声并消除上下文依赖性;2)使用基于阈值的识别进行异常检测;3)对识别出的异常进行验证和去除。
我们证明,我们的方法通过补偿信号偏移值有效地检测和去除异常,同时在计算上保持高效且适用于实时应用。在静态阈值为1.06 pF/cm且使用窗口大小 = 1和 = 15的双滚动聚合变压器的情况下,它实现了0.79的F1分数。这种灵活且可扩展的算法有可能弥合过程实时分析与控制中的关键差距。