Suppr超能文献

在资源有限的环境下,剖宫产术后无线与常规生理监测以降低产妇发病率和死亡率:2 型混合有效性实施研究方案。

Wireless versus routine physiologic monitoring after cesarean delivery to reduce maternal morbidity and mortality in a resource-limited setting: protocol of type 2 hybrid effectiveness-implementation study.

机构信息

Department of Obstetrics and Gynecology, Massachusetts General Hospital, 55 Fruit Street, Founders 5, Boston, MA, USA.

Center for Global Health, Massachusetts General Hospital, Boston, MA, USA.

出版信息

BMC Pregnancy Childbirth. 2021 Feb 12;21(1):124. doi: 10.1186/s12884-021-03550-w.

Abstract

BACKGROUND

Women in sub-Saharan Africa have the highest rates of morbidity and mortality during childbirth globally. Despite increases in facility-based childbirth, gaps in quality of care at facilities have limited reductions in maternal deaths. Infrequent physiologic monitoring of women around childbirth is a major gap in care that leads to delays in life-saving interventions for women experiencing complications.

METHODS

We will conduct a type-2 hybrid effectiveness-implementation study over 12 months to evaluate using a wireless physiologic monitoring system to detect and alert clinicians of abnormal vital signs in women for 24 h after undergoing emergency cesarean delivery at a tertiary care facility in Uganda. We will provide physiologic data (heart rate, respiratory rate, temperature and blood pressure) to clinicians via a smartphone-based application with alert notifications if monitored women develop predefined abnormalities in monitored physiologic signs. We will alternate two-week intervention and control time periods where women and clinicians use the wireless monitoring system during intervention periods and current standard of care (i.e., manual vital sign measurement when clinically indicated) during control periods. Our primary outcome for effectiveness is a composite of severe maternal outcomes per World Health Organization criteria (e.g. death, cardiac arrest, jaundice, shock, prolonged unconsciousness, paralysis, hysterectomy). Secondary outcomes include maternal mortality rate, and case fatality rates for postpartum hemorrhage, hypertensive disorders, and sepsis. We will use the RE-AIM implementation framework to measure implementation metrics of the wireless physiologic system including Reach (proportion of eligible women monitored, length of time women monitored), Efficacy (proportion of women with monitoring according to Uganda Ministry of Health guidelines, number of appropriate alerts sent), Adoption (proportion of clinicians utilizing physiologic data per shift, clinical actions in response to alerts), Implementation (fidelity to monitoring protocol), Maintenance (sustainability of implementation over time). We will also perform in-depth qualitative interviews with up to 30 women and 30 clinicians participating in the study.

DISCUSSION

This is the first hybrid-effectiveness study of wireless physiologic monitoring in an obstetric population. This study offers insights into use of wireless monitoring systems in low resource-settings, as well as normal and abnormal physiologic parameters among women delivering by cesarean.

TRIAL REGISTRATION

ClinicalTrials.gov , NCT04060667 . Registered on 08/01/2019.

摘要

背景

在撒哈拉以南非洲地区,女性在分娩期间的发病率和死亡率居全球最高。尽管在医疗机构分娩的比例有所增加,但医疗机构在护理质量方面仍存在差距,这限制了孕产妇死亡人数的减少。在分娩期间,女性的生理监测不频繁,这是护理方面的一个主要差距,导致出现并发症的女性错失挽救生命的干预措施。

方法

我们将在 12 个月内进行一项 2 型混合有效性-实施研究,以评估在乌干达的一家三级保健机构接受紧急剖宫产的女性在分娩后 24 小时内使用无线生理监测系统来检测和提醒临床医生异常生命体征的效果。我们将通过基于智能手机的应用程序向临床医生提供生理数据(心率、呼吸频率、体温和血压),如果监测女性出现监测生理体征的预定义异常,应用程序将发出警报通知。我们将交替进行为期两周的干预和对照期,在此期间,女性和临床医生使用无线监测系统,而在对照期则使用当前的标准护理(即根据临床指征进行手动生命体征测量)。我们的有效性主要结局是根据世界卫生组织标准(例如死亡、心脏骤停、黄疸、休克、昏迷时间延长、瘫痪、子宫切除)定义的严重产妇结局的综合指标。次要结局包括孕产妇死亡率以及产后出血、高血压疾病和败血症的病死率。我们将使用 RE-AIM 实施框架来衡量无线生理系统的实施指标,包括:(监测的合格女性比例、监测女性的时间长度)、效果(根据乌干达卫生部指南监测的女性比例、发送的适当警报数量)、采用(每班利用生理数据的临床医生比例、对警报的临床反应)、实施(对监测方案的遵从性)和维持(随着时间的推移实施的可持续性)。我们还将对参与研究的最多 30 名女性和 30 名临床医生进行深入的定性访谈。

讨论

这是首例在产科人群中进行的无线生理监测混合有效性研究。该研究为在资源匮乏环境中使用无线监测系统以及剖宫产女性的正常和异常生理参数提供了见解。

试验注册

ClinicalTrials.gov,NCT04060667。于 2019 年 8 月 1 日注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b925/7881604/36722019b6b6/12884_2021_3550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验