Clinical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
Department of Electronic Engineering, Sogang University, Seoul, South Korea.
BMC Med Imaging. 2021 Feb 12;21(1):26. doi: 10.1186/s12880-021-00558-8.
The purpose of this study was to develop a software tool and evaluate different T1 map calculation methods in terms of computation time in cardiac magnetic resonance imaging.
The modified Look-Locker inversion recovery (MOLLI) sequence was used to acquire multiple inversion time (TI) images for pre- and post-contrast T1 mapping. The T1 map calculation involved pixel-wise curve fitting based on the T1 relaxation model. A variety of methods were evaluated using data from 30 subjects for computational efficiency: MRmap, python Levenberg-Marquardt (LM), python reduced-dimension (RD) non-linear least square, C++ single- and multi-core LM, and C++ single- and multi-core RD.
Median (interquartile range) computation time was 126 s (98-141) for the publicly available software MRmap, 261 s (249-282) for python LM, 77 s (74-80) for python RD, 3.4 s (3.1-3.6) for C++ multi-core LM, and 1.9 s (1.9-2.0) for C++ multi-core RD. The fastest C++ multi-core RD and the publicly available MRmap showed good agreement of myocardial T1 values, resulting in 95% Bland-Altman limits of agreement of (- 0.83 to 0.58 ms) and (- 6.57 to 7.36 ms) with mean differences of - 0.13 ms and 0.39 ms, for the pre- and post-contrast, respectively.
The C++ multi-core RD was the fastest method on a regular eight-core personal computer for pre- or post-contrast T1 map calculation. The presented software tool (fT1fit) facilitated rapid T1 map and extracellular volume fraction map calculations.
本研究旨在开发一款软件工具,并评估不同的 T1 图谱计算方法在心脏磁共振成像中的计算时间。
使用改良 Look-Locker 反转恢复(MOLLI)序列采集多个反转时间(TI)图像进行对比前和对比后 T1 映射。T1 图谱计算涉及基于 T1 弛豫模型的像素级曲线拟合。使用 30 名受试者的数据评估了多种方法的计算效率:MRmap、python Levenberg-Marquardt(LM)、python 降维(RD)非线性最小二乘、C++ 单核和多核 LM 以及 C++ 单核和多核 RD。
公开可用软件 MRmap 的计算时间中位数(四分位距)为 126 秒(98-141),python LM 为 261 秒(249-282),python RD 为 77 秒(74-80),C++ 多核 LM 为 3.4 秒(3.1-3.6),C++ 多核 RD 为 1.9 秒(1.9-2.0)。最快的 C++ 多核 RD 和公开可用的 MRmap 显示出良好的心肌 T1 值一致性,导致对比前和对比后的 95% Bland-Altman 一致性界限分别为(-0.83 至 0.58 毫秒)和(-6.57 至 7.36 毫秒),平均差异分别为-0.13 毫秒和 0.39 毫秒。
对于对比前或对比后 T1 图谱计算,C++ 多核 RD 是常规八核个人计算机上最快的方法。本研究提出的软件工具(fT1fit)方便了 T1 图谱和细胞外容积分数图谱的快速计算。