Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
Sci Adv. 2021 Feb 12;7(7). doi: 10.1126/sciadv.abe5085. Print 2021 Feb.
Mitochondrial dysfunction is an established hallmark of aging and neurodegenerative disorders such as Down syndrome (DS) and Alzheimer's disease (AD). Using a high-resolution density gradient separation of extracellular vesicles (EVs) isolated from murine and human DS and diploid control brains, we identify and characterize a previously unknown population of double-membraned EVs containing multiple mitochondrial proteins distinct from previously described EV subtypes, including microvesicles and exosomes. We term these newly identified mitochondria-derived EVs "mitovesicles." We demonstrate that brain-derived mitovesicles contain a specific subset of mitochondrial constituents and that their levels and cargo are altered during pathophysiological processes where mitochondrial dysfunction occurs, including in DS. The development of a method for the selective isolation of mitovesicles paves the way for the characterization in vivo of biological processes connecting EV biology and mitochondria dynamics and for innovative therapeutic and diagnostic strategies.
线粒体功能障碍是衰老和神经退行性疾病(如唐氏综合征(DS)和阿尔茨海默病(AD))的既定标志。我们使用从鼠和人 DS 以及二倍体对照大脑中分离的细胞外囊泡(EV)的高分辨率密度梯度分离方法,鉴定并表征了一种以前未知的含有多种不同于先前描述的 EV 亚型的线粒体蛋白的双层 EV 群体,包括微囊泡和外泌体。我们将这些新鉴定的线粒体衍生 EV 称为“mitovesicles”。我们证明,脑源性 mitovesicles 含有一组特定的线粒体成分,并且它们的水平和货物在发生线粒体功能障碍的病理生理过程中发生改变,包括在 DS 中。选择性分离 mitovesicles 的方法的开发为描述 EV 生物学和线粒体动力学之间的生物过程以及创新的治疗和诊断策略铺平了道路。