Patel S N, Ishahak M, Chaimov D, Velraj A, LaShoto D, Hagan D W, Buchwald P, Phelps E A, Agarwal A, Stabler C L
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA.
Sci Adv. 2021 Feb 12;7(7). doi: 10.1126/sciadv.aba5515. Print 2021 Feb.
Three-dimensional (3D) multicellular organoids recapitulate the native complexities of human tissue better than traditional cellular monolayers. As organoids are insufficiently supported using standard static culture, microphysiological systems (MPSs) provide a key enabling technology to maintain organoid physiology in vitro. Here, a polydimethylsiloxane-free MPS that enables continuous dynamic culture and serial in situ multiparametric assessments was leveraged to culture organoids, specifically human and rodent pancreatic islets, within a 3D alginate hydrogel. Computational modeling predicted reduced hypoxic stress and improved insulin secretion compared to static culture. Experimental validation via serial, high-content, and noninvasive assessments quantitatively confirmed that the MPS platform retained organoid viability and functionality for at least 10 days, in stark contrast to the acute decline observed overnight under static conditions. Our findings demonstrate the importance of a dynamic in vitro microenvironment for the preservation of primary organoid function and the utility of this MPS for in situ multiparametric assessment.
与传统的细胞单层相比,三维(3D)多细胞类器官能更好地重现人体组织的天然复杂性。由于使用标准静态培养对类器官的支持不足,微生理系统(MPS)提供了一项关键的 enabling 技术,以在体外维持类器官的生理功能。在这里,一种不含聚二甲基硅氧烷的 MPS 被用于在 3D 藻酸盐水凝胶中培养类器官,特别是人和啮齿动物的胰岛,该 MPS 能够实现连续动态培养和系列原位多参数评估。计算模型预测,与静态培养相比,缺氧应激会降低,胰岛素分泌会改善。通过系列、高内涵和非侵入性评估进行的实验验证定量证实,MPS 平台至少在 10 天内保持了类器官的活力和功能,这与在静态条件下一夜之间观察到的急剧下降形成鲜明对比。我们的研究结果证明了动态体外微环境对维持原代类器官功能的重要性,以及该 MPS 用于原位多参数评估的实用性。