Riberolles S X M, Trevisan T V, Kuthanazhi B, Heitmann T W, Ye F, Johnston D C, Bud'ko S L, Ryan D H, Canfield P C, Kreyssig A, Vishwanath A, McQueeney R J, Wang L -L, Orth P P, Ueland B G
Ames Laboratory, Ames, IA, 50011, USA.
Department of Physics and Astronomy, Iowa State University, Ames, IA, USA.
Nat Commun. 2021 Feb 12;12(1):999. doi: 10.1038/s41467-021-21154-y.
Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuInAs is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuInAs actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180 rotation and time-reversal symmetries: [Formula: see text]. Surfaces protected by [Formula: see text] are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of μH ≈ 1 to 2 T can tune between gapless and gapped surface states.
了解磁对称性对于利用磁性拓扑材料的非平凡表面态至关重要。铕铟砷(EuInAs)就是一个很好的例子,因为据预测它具有共线反铁磁序,其中磁矩方向决定了支持轴子电动力学的拓扑晶体绝缘体相或具有手性棱态的高阶拓扑绝缘体相。在此,我们利用中子衍射、对称性分析和密度泛函理论结果来证明,EuInAs实际上表现出低对称性螺旋反铁磁序,这使其成为一种化学计量比的磁性拓扑晶体轴子绝缘体,受180°旋转和时间反演对称性的组合保护:[公式:见正文]。受[公式:见正文]保护的表面预计具有奇异的无隙狄拉克锥,该狄拉克锥不固定于特定的晶体动量。所有其他表面都有带隙狄拉克锥,并表现出半整数量子反常霍尔电导率。我们预测,施加约1至2 T的适度磁场的方向可以在无隙和带隙表面态之间进行调节。