Suppr超能文献

反铁磁EuCdAs中出现非平凡低能狄拉克费米子

Emergence of Nontrivial Low-Energy Dirac Fermions in Antiferromagnetic EuCd As.

作者信息

Ma Junzhang, Wang Han, Nie Simin, Yi Changjiang, Xu Yuanfeng, Li Hang, Jandke Jasmin, Wulfhekel Wulf, Huang Yaobo, West Damien, Richard Pierre, Chikina Alla, Strocov Vladimir N, Mesot Joël, Weng Hongming, Zhang Shengbai, Shi Youguo, Qian Tian, Shi Ming, Ding Hong

机构信息

Paul Scherrer Institute, Swiss Light Source, CH-5232, Villigen, PSI, Switzerland.

Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne, CH-10 15, Lausanne, Switzerland.

出版信息

Adv Mater. 2020 Apr;32(14):e1907565. doi: 10.1002/adma.201907565. Epub 2020 Feb 24.

Abstract

Parity-time symmetry plays an essential role for the formation of Dirac states in Dirac semimetals. So far, all of the experimentally identified topologically nontrivial Dirac semimetals (DSMs) possess both parity and time reversal symmetry. The realization of magnetic topological DSMs remains a major issue in topological material research. Here, combining angle-resolved photoemission spectroscopy with density functional theory calculations, it is ascertained that band inversion induces a topologically nontrivial ground state in EuCd As . As a result, ideal magnetic Dirac fermions with simplest double cone structure near the Fermi level emerge in the antiferromagnetic (AFM) phase. The magnetic order breaks time reversal symmetry, but preserves inversion symmetry. The double degeneracy of the Dirac bands is protected by a combination of inversion, time-reversal, and an additional translation operation. Moreover, the calculations show that a deviation of the magnetic moments from the c-axis leads to the breaking of C3 rotation symmetry, and thus, a small bandgap opens at the Dirac point in the bulk. In this case, the system hosts a novel state containing three different types of topological insulator: axion insulator, AFM topological crystalline insulator (TCI), and higher order topological insulator. The results provide an enlarged platform for the quest of topological Dirac fermions in a magnetic system.

摘要

宇称 - 时间对称性在狄拉克半金属中狄拉克态的形成过程中起着至关重要的作用。到目前为止,所有通过实验确定的拓扑非平凡狄拉克半金属(DSM)都具有宇称和时间反演对称性。磁性拓扑DSM的实现仍然是拓扑材料研究中的一个主要问题。在此,通过将角分辨光电子能谱与密度泛函理论计算相结合,确定了能带反转在EuCdAs中诱导出一种拓扑非平凡基态。结果,在反铁磁(AFM)相中出现了在费米能级附近具有最简单双锥结构的理想磁性狄拉克费米子。磁序打破了时间反演对称性,但保留了空间反演对称性。狄拉克能带的双重简并性由空间反演、时间反演以及一个额外的平移操作共同保护。此外,计算表明磁矩偏离c轴会导致C3旋转对称性的破坏,因此,在体材料的狄拉克点处会打开一个小的带隙。在这种情况下,该系统呈现出一种包含三种不同类型拓扑绝缘体的新状态:轴子绝缘体、AFM拓扑晶体绝缘体(TCI)和高阶拓扑绝缘体。这些结果为在磁性系统中寻找拓扑狄拉克费米子提供了一个更大的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验