Suppr超能文献

多共线性泊松回归模型的新估计量:模拟与应用。

A new estimator for the multicollinear Poisson regression model: simulation and application.

机构信息

Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.

Department of Statistics, Federal University of Technology, Akure, Nigeria.

出版信息

Sci Rep. 2021 Feb 12;11(1):3732. doi: 10.1038/s41598-021-82582-w.

Abstract

The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is multicollinearity problem. Some simulation experiments are conducted to compare the estimators' performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft damage data has been analyzed. The simulation results and the real-life application evidenced that the proposed estimator performs better than the rest of the estimators.

摘要

最大似然估计(MLE)在泊松回归模型(PRM)中存在多重共线性时会出现不稳定性问题。在这项研究中,我们提出了一种带有一些偏置参数的新估计器,用于在存在多重共线性问题时估计 PRM 的回归系数。通过使用均方误差(MSE)准则进行一些模拟实验来比较估计器的性能。为了说明问题,对飞机损坏数据进行了分析。模拟结果和实际应用表明,所提出的估计器的性能优于其他估计器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6467/7881247/7676cef16bae/41598_2021_82582_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验